那咱们从 hello word开始~
1、
1、Hello World
print("Hello, World!")
官方文档: https://docs.python.org/3/
2、
2、变量和数据类型
name = "Alice"
age = 30
height = 175.5
is_student = True
官方文档: https://docs.python.org/3/tutorial/introduction.html#numbers
3、
3、列表
fruits = ["apple", "banana", "cherry"]
fruits.append("date")
print(fruits)
官方文档: https://docs.python.org/3/tutorial/introduction.html#lists
4、
4、字典
person = {"name": "Alice", "age": 30, "city": "New York"}
print(person["name"])
官方文档: https://docs.python.org/3/tutorial/datastructures.html#dictionaries
5、
5、循环
for i in range(1, 6):
print(i)
官方文档: https://docs.python.org/3/tutorial/introduction.html#first-steps-towards-programming
6、
6、条件语句
x = 5
if x > 10:
print("x is greater than 10")
else:
print("x is not greater than 10")
官方文档: https://docs.python.org/3/tutorial/controlflow.html
7、
7、函数
def greet(name):
return f"Hello, {name}!"
message = greet("Alice")
print(message)
官方文档: https://docs.python.org/3/tutorial/controlflow.html#defining-functions
8、
8、模块导入
import math
print(math.sqrt(16))
官方文档: https://docs.python.org/3/tutorial/modules.html
9、
9、异常处理
try:
result = 10 / 0
except ZeroDivisionError:
print("Division by zero is not allowed.")
官方文档: https://docs.python.org/3/tutorial/errors.html
10、
10、文件操作
with open("example.txt", "w") as file:
file.write("Hello, File!")
with open("example.txt", "r") as file:
content = file.read()
print(content)
官方文档: https://docs.python.org/3/tutorial/inputoutput.html
11、
11、日期和时间
from datetime import datetime
now = datetime.now()
print(now)
官方文档: https://docs.python.org/3/library/datetime.html
12、
12、随机数生成
import random
random_number = random.randint(1, 100)
print(random_number)
官方文档: https://docs.python.org/3/library/random.html
13、
13、正则表达式
import re
text = "Hello, 12345"
pattern = r'\d+'
match = re.search(pattern, text)
if match:
print(match.group())
官方文档: https://docs.python.org/3/library/re.html
14、
14、Web请求
import requests
response = requests.get("https://www.example.com")
print(response.text)
官方文档: https://docs.python-requests.org/en/master/
15、
15、CSV文件处理
import csv
with open("data.csv", "w", newline="") as file:
writer = csv.writer(file)
writer.writerow(["Name", "Age"])
writer.writerow(["Alice", 25])
with open("data.csv", "r") as file:
reader = csv.reader(file)
for row in reader:
print(row)
官方文档: https://docs.python.org/3/library/csv.html
16、
16、JSON处理
import json
data = {"name": "Bob", "age": 35}
json_data = json.dumps(data)
print(json_data)
官方文档: https://docs.python.org/3/library/json.html
17、
17、爬虫 - BeautifulSoup
from bs4 import BeautifulSoup
import requests
url = "https://www.example.com"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
print(soup.title.text)
官方文档: https://www.crummy.com/software/BeautifulSoup/bs4/doc/
18、
18、多线程
import threading
def print_numbers():
for i in range(1, 6):
print(f"Number: {i}")
def print_letters():
for letter in "abcde":
print(f"Letter: {letter}")
thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_letters)
thread1.start()
thread2.start()
官方文档: https://docs.python.org/3/library/threading.html
23、
23、数据爬取 - Selenium
from selenium import webdriver
driver = webdriver.Chrome()
driver.get("https://www.example.com")
官方文档: https://www.selenium.dev/documentation/en/
20、
20、REST API - Flask
from flask import Flask, jsonify
app = Flask(__name)
@app.route('/api', methods=['GET'])
def get_data():
data = {'message': 'Hello, API!'}
return jsonify(data)
if __name__ == '__main__':
app.run()
官方文档: https://flask.palletsprojects.com/en/2.1.x/
21、
21、数据库连接 - SQLite
import sqlite3
conn = sqlite3.connect('mydatabase.db')
cursor = conn.cursor()
cursor.execute('CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY, name TEXT)')
conn.commit()
conn.close()
官方文档: https://www.sqlite.org/docs.html
22、
22、图像处理 - Pillow
from PIL import Image
img = Image.open('example.jpg')
img.show()
官方文档: https://pillow.readthedocs.io/en/stable/index.html
23、
23、图形界面 - Tkinter
import tkinter as tk
root = tk.Tk()
label = tk.Label(root, text="Hello, GUI!")
label.pack()
root.mainloop()
官方文档: https://docs.python.org/3/library/tkinter.html
24、
24、文本生成 - Faker
from faker import Faker
fake = Faker()
print(fake.name())
官方文档: https://faker.readthedocs.io/en/master/
25、
25、加密和解密 - cryptography
from cryptography.fernet import Fernet
key = Fernet.generate_key()
cipher_suite = Fernet(key)
text = "Secret message".encode()
cipher_text = cipher_suite.encrypt(text)
print(cipher_text)
官方文档: https://cryptography.io/en/latest/
26、
26、Socket编程
import socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.bind(('127.0.0.1', 12345))
server_socket.listen(5)
print("Server is listening...")
while True:
client_socket, addr = server_socket.accept()
print(f"Connection from {addr}")
client_socket.send(b"Hello, client!")
client_socket.close()
官方文档: https://docs.python.org/3/library/socket.html
27、
27、并发编程 - threading
import threading
def print
_numbers():
for i in range(1, 6):
print(f"Number: {i}")
def print_letters():
for letter in "abcde":
print(f"Letter: {letter}")
thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_letters)
thread1.start()
thread2.start()
官方文档: https://docs.python.org/3/library/threading.html
28、
28、正则表达式 - re
import re
text = "My phone number is 123-456-7890."
pattern = r'\d{3}-\d{3}-\d{4}'
match = re.search(pattern, text)
if match:
print(f"Phone number found: {match.group()}")
官方文档: https://docs.python.org/3/howto/regex.html
29、
29、REST API - FastAPI
from fastapi import FastAPI
app = FastAPI()
@app.get("/items/{item_id}")
def read_item(item_id: int, query_param: str = None):
return {"item_id": item_id, "query_param": query_param}
官方文档: https://fastapi.tiangolo.com/
30、
30、数据库连接 - SQLAlchemy
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base
engine = create_engine('sqlite:///mydatabase.db')
Base = declarative_base()
class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String)
Session = sessionmaker(bind=engine)
session = Session()
官方文档: https://docs.sqlalchemy.org/en/20/
31、
31、文本处理 - NLTK
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
text = "This is a sample sentence."
tokens = word_tokenize(text)
print(tokens)
官方文档: https://www.nltk.org/
32、
32、命令行应用 - argparse
import argparse
parser = argparse.ArgumentParser(description='A simple command-line app')
parser.add_argument('--name', type=str, help='Your name')
args = parser.parse_args()
print(f'Hello, {args.name}!')
官方文档: https://docs.python.org/3/library/argparse.html
33、
33、微服务 - Flask-RESTful
from flask import Flask
from flask_restful import Resource, Api
app = Flask(__name)
api = Api(app)
class HelloWorld(Resource):
def get(self):
return {'message': 'Hello, World!'}
api.add_resource(HelloWorld, '/')
官方文档: https://flask-restful.readthedocs.io/en/latest/
34、
34、数据处理 - BeautifulSoup
from bs4 import BeautifulSoup
import requests
url = "https://www.example.com"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
print(soup.title.text)
官方文档: https://www.crummy.com/software/BeautifulSoup/bs4/doc/
35、
35、加密 - hashlib
import hashlib
text = "Secret Password"
hash_object = hashlib.sha256(text.encode())
hash_hex = hash_object.hexdigest()
print(hash_hex)
官方文档: https://docs.python.org/3/library/hashlib.html
36、
36、数据序列化 - Pickle
import pickle
data = {'name': 'Alice', 'age': 30}
with open('data.pkl', 'wb') as file:
pickle.dump(data, file)
with open('data.pkl', 'rb') as file:
loaded_data = pickle.load(file)
print(loaded_data)
官方文档: https://docs.python.org/3/library/pickle.html
37、
37、并行处理 - concurrent.futures
import concurrent.futures
def square(x):
return x * x
with concurrent.futures.ThreadPoolExecutor() as executor:
results = executor.map(square, [1, 2, 3, 4, 5])
for result in results:
print(result)
官方文档: https://docs.python.org/3/library/concurrent.futures.html
38、
38、网络爬虫 - Scrapy
import scrapy
class MySpider(scrapy.Spider):
name = 'example.com'
start_urls = ['https://www.example.com']
def parse(self, response):
# 爬取和处理数据
pass
官方文档: https://docs.scrapy.org/en/latest/
39、
39、异步编程 - asyncio
import asyncio
async def hello():
await asyncio.sleep(1)
print("Hello, Async!")
loop = asyncio.get_event_loop()
loop.run_until_complete(hello())
官方文档: https://docs.python.org/3/library/asyncio.html
40、
40、数据分析 - Numpy
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr.mean())
官方文档: https://numpy.org/doc/stable/
41、
41、数据处理 - Pandas
import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
print(df)
官方文档: https://pandas.pydata.org/docs/
42、
42、数据可视化 - Matplotlib
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [10, 15, 13, 18, 20]
plt.plot(x, y)
plt.show()
官方文档: https://matplotlib.org/stable/contents.html
43、
43、机器学习 - Scikit-Learn
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2)
clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
官方文档: https://scikit-learn.org/stable/documentation.html
44、
44、机器学习 - Keras
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
官方文档: https://keras.io/guides/
45、
45、图像处理 - OpenCV
import cv2
image = cv2.imread('image.jpg')
cv2.imshow('Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
官方文档: https://docs.opencv.org/master/index.html
46、
46、数据爬取 - Scrapy
import scrapy
class MySpider(scrapy.Spider):
name = 'example.com'
start_urls = ['https://www.example.com']
def parse(self, response):
# 爬取和处理数据
pass
官方文档: https://docs.scrapy.org/en/latest/
47、
47、数据分析 - Seaborn
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset("iris")
sns.pairplot(data, hue="species")
plt.show()
官方文档: https://seaborn.pydata.org/introduction.html
48、
48、数据可视化 - Plotly
import plotly.express as px
fig = px.scatter(x=[1, 2, 3, 4], y=[10, 11, 12, 13])
fig.show()
官方文档: https://plotly.com/python/
49、
49、自然语言处理 - spaCy
import spacy
nlp = spacy.load('en_core_web_sm')
doc = nlp("This is a sample sentence.")
for token in doc:
print(token.text, token.pos_)
官方文档: https://spacy.io/usage/spacy-101
50、
50、机器学习 - XGBoost
import xgboost as xgb
data = xgb.DMatrix('train.csv')
param = {'max_depth': 3, 'eta': 0.1, 'objective': 'reg:squarederror'}
model = xgb.train(param, data, 10)
官方文档: https://xgboost.readthedocs.io/en/latest/
Last - 云图
今天整理了 50 个常用的Python示例代码。
最后,给出咱们开头云图的代码,代码中大家可以自行设置内容和权重。
import matplotlib.pyplot as plt
from wordcloud import WordCloud
# 方面列表和它们的权重
aspects = {
"Hello World": 3,
"Variables and Data Types": 4,
"Lists": 4,
"Dictionaries": 4,
"Loops": 4,
"Conditional Statements": 4,
"Functions": 4,
"Module Import": 4,
"Exception Handling": 4,
"Date and Time": 5,
"Random Number Generation": 5,
"Regular Expressions": 5,
"CSV File Handling": 5,
"JSON Handling": 5,
"BeautifulSoup": 5,
"File Operations": 5,
"Multithreading": 5,
"Tkinter": 5,
"Pandas": 6,
"asyncio": 5,
"XGBoost": 6,
"Matplotlib": 5,
"Scikit-Learn": 5,
"Selenium": 5,
"Flask": 1,
"Web Requests": 3,
"SQLite": 3,
"Pillow": 3,
"Numpy": 6,
"Faker": 3,
"cryptography": 3,
"Socket Programming": 3,
"threading": 3,
"re": 4,
"NLTK": 5,
"Keras": 7,
"OpenCV": 7,
"Scrapy": 7,
"FastAPI": 3,
"SQLAlchemy": 5,
"Seaborn": 5,
"Plotly": 5,
"argparse": 5,
"Flask-RESTful": 3,
"BeautifulSoup": 3,
"spaCy": 6,
"hashlib": 5,
"Pickle": 5,
"concurrent.futures": 5,
"Scrapy": 6
}
# 将方面列表和权重转化为文本
aspects_text = " ".join([aspect for aspect, weight in aspects.items() for _ in range(weight)])
# 创建WordCloud对象
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(aspects_text)
# 显示云图
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
最后
最后
今天整理了常用的 50 个Python脚本模块,分别是基础语法、机器学习、数据处理、常用服务端的一些内容。
喜欢的朋友可以收藏、点赞、转发起来!
关注本号,带来更多干货实例,提升工作学习效率!
推荐阅读回归类算法总结!
svm算法详细总结!
详解 5 种距离算法!
详解过拟合和欠拟合!正则化算法完整总结!人工神经网络完整总结!
27个,强大的Python库!一万字的统计学知识大梳理!机器学习各个算法的优缺点!9 大核心机器学习算法解释!最终篇:统计学知识大梳理!
来啦!最强Python分析工具!
通透!10种损失函数大梳理!!6大部分,20 个机器学习算法全面汇总!!
https://mp.weixin.qq.com/s/s02gLOEVX6Vxh4zxNWdMQA
标签:脚本,Python,docs,50,文档,https,org,print,import From: https://www.cnblogs.com/QQ-77Ly/p/17788995.html