首页 > 编程语言 >python numpy所有的数据类型 查看 np.sctypeDict

python numpy所有的数据类型 查看 np.sctypeDict

时间:2023-09-27 11:25:37浏览次数:38  
标签:python bytes sctypeDict unicode np 数据类型

>>> np.sctypeDict
{'?': <class 'numpy.bool_'>, 0: <class 'numpy.bool_'>, 'byte': <class 'numpy.int8'>, 'b': <class 'numpy.int8'>, 1: <class 'numpy.int8'>, 'ubyte': <class 'numpy.uint8'>, 'B': <class 'numpy.uint8'>, 2: <class 'numpy.uint8'>, 'short': <class 'numpy.int16'>, 'h': <class 'numpy.int16'>, 3: <class 'numpy.int16'>, 'ushort': <class 'numpy.uint16'>, 'H': <class 'numpy.uint16'>, 4: <class 'numpy.uint16'>, 'i': <class 'numpy.intc'>, 5: <class 'numpy.intc'>, 'uint': <class 'numpy.uint32'>, 'I': <class 'numpy.uintc'>, 6: <class 'numpy.uintc'>, 'intp': <class 'numpy.int64'>, 'p': <class 'numpy.int64'>, 9: <class 'numpy.int64'>, 'uintp': <class 'numpy.uint64'>, 'P': <class 'numpy.uint64'>, 10: <class 'numpy.uint64'>, 'long': <class 'numpy.int32'>, 'l': <class 'numpy.int32'>, 7: <class 'numpy.int32'>, 'L': <class 'numpy.uint32'>, 8: <class 'numpy.uint32'>, 'longlong': <class 'numpy.int64'>, 'q': <class 'numpy.int64'>, 'ulonglong': <class 'numpy.uint64'>, 'Q': <class 'numpy.uint64'>, 'half': <class 'numpy.float16'>, 'e': <class 'numpy.float16'>, 23: <class 'numpy.float16'>, 'f': <class 'numpy.float32'>, 11: <class 'numpy.float32'>, 'double': <class 'numpy.float64'>, 'd': <class 'numpy.float64'>, 12: <class 'numpy.float64'>, 'longdouble': <class 'numpy.longdouble'>, 'g': <class 'numpy.longdouble'>, 13: <class 'numpy.longdouble'>, 'cfloat': <class 'numpy.complex128'>, 'F': <class 'numpy.complex64'>, 14: <class 'numpy.complex64'>, 'cdouble': <class 'numpy.complex128'>, 'D': <class 'numpy.complex128'>, 15: <class 'numpy.complex128'>, 'clongdouble': <class 'numpy.clongdouble'>, 'G': <class 'numpy.clongdouble'>, 16: <class 'numpy.clongdouble'>, 'O': <class 'numpy.object_'>, 17: <class 'numpy.object_'>, 'S': <class 'numpy.bytes_'>, 18: <class 'numpy.bytes_'>, 'unicode': <class 'numpy.str_'>, 'U': <class 'numpy.str_'>, 19: <class 'numpy.str_'>, 'void': <class 'numpy.void'>, 'V': <class 'numpy.void'>, 20: <class 'numpy.void'>, 'M': <class 'numpy.datetime64'>, 21: <class 'numpy.datetime64'>, 'm': <class 'numpy.timedelta64'>, 22: <class 'numpy.timedelta64'>, 'bool8': <class 'numpy.bool_'>, 'b1': <class 'numpy.bool_'>, 'int64': <class 'numpy.int64'>, 'i8': <class 'numpy.int64'>, 'uint64': <class 'numpy.uint64'>, 'u8': <class 'numpy.uint64'>, 'float16': <class 'numpy.float16'>, 'f2': <class 'numpy.float16'>, 'float32': <class 'numpy.float32'>, 'f4': <class 'numpy.float32'>, 'float64': <class 'numpy.float64'>, 'f8': <class 'numpy.float64'>, 'complex64': <class 'numpy.complex64'>, 'c8': <class 'numpy.complex64'>, 'complex128': <class 'numpy.complex128'>, 'c16': <class 'numpy.complex128'>, 'object0': <class 'numpy.object_'>, 'bytes0': <class 'numpy.bytes_'>, 'str0': <class 'numpy.str_'>, 'void0': <class 'numpy.void'>, 'datetime64': <class 'numpy.datetime64'>, 'M8': <class 'numpy.datetime64'>, 'timedelta64': <class 'numpy.timedelta64'>, 'm8': <class 'numpy.timedelta64'>, 'Bytes0': <class 'numpy.bytes_'>, 'Datetime64': <class 'numpy.datetime64'>, 'Str0': <class 'numpy.str_'>, 'Uint64': <class 'numpy.uint64'>, 'int32': <class 'numpy.int32'>, 'i4': <class 'numpy.int32'>, 'uint32': <class 'numpy.uint32'>, 'u4': <class 'numpy.uint32'>, 'int16': <class 'numpy.int16'>, 'i2': <class 'numpy.int16'>, 'uint16': <class 'numpy.uint16'>, 'u2': <class 'numpy.uint16'>, 'int8': <class 'numpy.int8'>, 'i1': <class 'numpy.int8'>, 'uint8': <class 'numpy.uint8'>, 'u1': <class 'numpy.uint8'>, 'complex_': <class 'numpy.complex128'>, 'int0': <class 'numpy.int64'>, 'uint0': <class 'numpy.uint64'>, 'single': <class 'numpy.float32'>, 'csingle': <class 'numpy.complex64'>, 'singlecomplex': <class 'numpy.complex64'>, 'float_': <class 'numpy.float64'>, 'intc': <class 'numpy.intc'>, 'uintc': <class 'numpy.uintc'>, 'int_': <class 'numpy.int32'>, 'longfloat': <class 'numpy.longdouble'>, 'clongfloat': <class 'numpy.clongdouble'>, 'longcomplex': <class 'numpy.clongdouble'>, 'bool_': <class 'numpy.bool_'>, 'bytes_': <class 'numpy.bytes_'>, 'string_': <class 'numpy.bytes_'>, 'str_': <class 'numpy.str_'>, 'unicode_': <class 'numpy.str_'>, 'object_': <class 'numpy.object_'>, 'int': <class 'numpy.int32'>, 'float': <class 'numpy.float64'>, 'complex': <class 'numpy.complex128'>, 'bool': <class 'numpy.bool_'>, 'object': <class 'numpy.object_'>, 'str': <class 'numpy.str_'>, 'bytes': <class 'numpy.bytes_'>, 'a': <class 'numpy.bytes_'>}

 

标签:python,bytes,sctypeDict,unicode,np,数据类型
From: https://www.cnblogs.com/xkdn/p/17732229.html

相关文章

  • Python中的函数注释:参数有冒号,声明后有-> 箭头
    我在查看python的fixture源码时发现fixture的方法定义形式如下:deffixture(fixture_function:Optional[_FixtureFunction]=None,*,scope:"Union[_Scope,Callable[[str,Config],_Scope]]"="function",params:Optional[Iterable[object]]......
  • 接口测试系列文章3——Python接口测试其实只需三步!
    接口测试通用步骤小品中曾说过,大象放冰箱里分三步!分别是:一、把冰箱门打开二、把大象放到冰箱里三、把门关上那么问题来了!通过代码做接口测试分几步呢?答:也分三步!其实无论是手工进行接口测试还是通过代码进行接口测试,三个核心步骤如下:构建接口发送接口校验接口Python编码进行......
  • 进阶Python,从编写Python函数开始!
    好多同学都有这样的疑惑,我学习了python的基础语法,那么具体应用该从哪里入手呢?首先大家要确定,代码必须用起来才能越来越熟练!读懂十行代码不如自己亲自上手遍写一行!代码想熟练最好的方法就是能够通过代码解决工作中的实际问题,例如完成UI自动化测试、接口测试、创建测试数据、构建测试......
  • 测试同学必须熟悉的python模块
    测试同学在进行python的面试过程中,必问的问题是你最常用的python模块有哪些?这些模块解决了你工作中的哪些问题?在这里我把测试同学在实际工作中常用的py模块进行了汇总,本文编写的目的是对各个模块的功能进行概要介绍并没有提供具体api的使用方法,如果大家想要深入了解各个模块api的具......
  • Python高频面试题——装饰器(带大家理解装饰器的本质)
    装饰器概念装饰器本质上是一个python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限验证等场景,装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可......
  • Python高频面试题——生成器(最通俗的讲解)
    生成器定义在Python中,使用了yield的函数被称为生成器(generator)。跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。在调用生成器运行的过程中,每次遇到yield时函数会暂停并保存当前所有的运行信息,返回yield的值,并在......
  • playwright python环境运行报错 ImportError: DLL load failed
    网上建议网上好多文章介绍playwright的环境搭建,用以下两条语句即可完成pipinstallplaywrightplaywrightinstall安装完毕后,尝试执行一段经典的pythondemofromplaywright.sync_apiimportsync_playwrightwithsync_playwright()asp:browser=p.chromium.launch()page......
  • Python高频面试题——迭代器和可迭代对象
     无论是面试测试还是运维涉及到python编码岗位时,迭代器和可迭代对象都是绕不开的一个问题,本文对这两个概念进行重点讲解,本文从什么是迭代讲起,然后介绍迭代器和可迭代对象二者的区别,最后通过for循环和自定义迭代器来加深读者对这两个概念的理解,只要认真阅读完文章,相信一定会帮助到......
  • Python爬虫-爬取百度搜索结果页的网页标题及其真实网址
    共两个依赖的需提前安装的第三方库:requests和bs4库cmd命令行输入安装requests库:pip3install-ihttps://pypi.douban.com/simplerequests安装bs4库:pip3install-ihttps://pypi.douban.com/simplebeautifulsoup4 本微项目源文件下载地址:https://wwuw.lanzouj.com/i1Au51......
  • Python 图片并行下载
    需求:有大量图片的url需要将其快速下载到本地技术点:采用编写并发代码的库asyncio以及基于asyncio实现的HTTP框架aiohttppipinstallasynciopipinstallaiohttp代码如下:importjsonimportosimportrequestsimportaiohttpimportasyncioimage_save_dir="images"......