首页 > 编程语言 >python: Sorting Algorithms

python: Sorting Algorithms

时间:2023-09-23 23:55:35浏览次数:50  
标签:Sorting return python SortingAlgorithms len geovindu range Algorithms array

 

# encoding: utf-8
# 版权所有 2023 涂聚文有限公司
# 许可信息查看:Python Sorting Algorithms
# 描述: * https://www.programiz.com/dsa/counting-sort
#  * https://www.geeksforgeeks.org/sorting-algorithms/
# Author    : geovindu,Geovin Du 涂聚文.
# IDE       : PyCharm 2023.1 python 311
# Datetime  : 2023/9/21 21:55
# User      : geovindu
# Product   : PyCharm
# Project   : EssentialAlgorithms
# File      : SortingAlgorithms.py
# explain   : 学习

import tkinter as tk
from tkinter import ttk
import itertools
import math
import sys
import os
from typing import List

class SortingAlgorithms(object):
    """
    排序算法
    """


    def BubbleSort(array:list):
        """
        1。Bubble Sort冒泡排序法
        :param array int数组
        :return:
        """
        # loop to access each array element
        for i in range(len(array)):

            # loop to compare array elements
            for j in range(0, len(array) - i - 1):

                # compare two adjacent elements
                # change > to < to sort in descending order
                if array[j] > array[j + 1]:
                    # swapping elements if elements
                    # are not in the intended order
                    temp = array[j]
                    array[j] = array[j + 1]
                    array[j + 1] = temp

    def BubbleSort2(array:list):
        """
        1。Bubble Sort冒泡排序法
        :param array int数组
        :return:
        """

        # loop through each element of array
        for i in range(len(array)):

            # keep track of swapping
            swapped = False

            # loop to compare array elements
            for j in range(0, len(array) - i - 1):

                # compare two adjacent elements
                # change > to < to sort in descending order
                if array[j] > array[j + 1]:
                    # swapping occurs if elements
                    # are not in the intended order
                    temp = array[j]
                    array[j] = array[j + 1]
                    array[j + 1] = temp

                    swapped = True

            # no swapping means the array is already sorted
            # so no need for further comparison
            if not swapped:
                break

    def SelectionSort(array:list):
        """
        2 python Program for Selection Sort 选择排序
        :param array int数组
        :return:
        """
        for i in range(len(array)):
            # Find the minimum element in remaining
            # unsorted array
            min_idx = i
            for j in range(i+1, len(array)):
                if array[min_idx] > array[j]:
                    min_idx = j

            # Swap the found minimum element with
            # the first element
            array[i], array[min_idx] = array[min_idx], array[i]

    def InsertionSort(array:list):
        """
        3 Insertion Sort插入排序
        :param array int数组
        :return:
        """
        # Traverse through 1 to len(arr)
        for i in range(1, len(array)):

            key = array[i]

            # Move elements of arr[0..i-1], that are
            # greater than key, to one position ahead
            # of their current position
            j = i - 1
            while j >= 0 and key < array[j]:
                array[j + 1] = array[j]
                j -= 1
            array[j + 1] = key

    def Partition(array, low, high):
        """
        :param array int数组
        :param low:
        :param high:
        :return:
        """
        # Choose the rightmost element as pivot
        pivot = array[high]

        # Pointer for greater element
        i = low - 1

        # Traverse through all elements
        # compare each element with pivot
        for j in range(low, high):
            if array[j] <= pivot:
                # If element smaller than pivot is found
                # swap it with the greater element pointed by i
                i = i + 1

                # Swapping element at i with element at j
                (array[i], array[j]) = (array[j], array[i])

        # Swap the pivot element with
        # the greater element specified by i
        (array[i + 1], array[high]) = (array[high], array[i + 1])

        # Return the position from where partition is done
        return i + 1


    def QuickSort(array, low, high):
        """
        4 Quick Sort 快速排序
        :param array int数组
        :param low:
        :param high:
        :return:
        """
        if low < high:
            # Find pivot element such that
            # element smaller than pivot are on the left
            # element greater than pivot are on the right
            pi = SortingAlgorithms.Partition(array, low, high)

            # Recursive call on the left of pivot
            SortingAlgorithms.QuickSort(array, low, pi - 1)

            # Recursive call on the right of pivot
            SortingAlgorithms.QuickSort(array, pi + 1, high)

    def MergeSort(array:list):
        """
        5 Merge Sort 合并/归并排序
        :param array int数组
        :return:
        """
        if len(array) > 1:

            # Finding the mid of the array
            mid = len(array) // 2

            # Dividing the array elements
            L = array[:mid]

            # Into 2 halves
            R = array[mid:]

            # Sorting the first half
            SortingAlgorithms.MergeSort(L)

            # Sorting the second half
            SortingAlgorithms.MergeSort(R)

            i = j = k = 0

            # Copy data to temp arrays L[] and R[]
            while i < len(L) and j < len(R):
                if L[i] <= R[j]:
                    array[k] = L[i]
                    i += 1
                else:
                    array[k] = R[j]
                    j += 1
                k += 1

            # Checking if any element was left
            while i < len(L):
                array[k] = L[i]
                i += 1
                k += 1

            while j < len(R):
                array[k] = R[j]
                j += 1
                k += 1

    def CountingSort(array:list,hight:int):
        """
        6 Counting Sort 计数排序
        :param array int数组
        :param hight 最大的整数 如100,数组中必须小数此数的整数
        :return:
        """
        size = len(array)
        output = [0] * size

        # Initialize count array
        dcount = [0] * hight

        # Store the count of each elements in count array
        print(size)
        for i in range(0, size):
            dcount[array[i]] += 1

        # Store the cummulative count 最大的数
        for i in range(1, hight):
            dcount[i] += dcount[i - 1]

        # Find the index of each element of the original array in count array
        # place the elements in output array
        i = size - 1
        while i >= 0:
            output[dcount[array[i]] - 1] = array[i]
            dcount[array[i]] -= 1
            i -= 1

        # Copy the sorted elements into original array
        for i in range(0, size):
            array[i] = output[i]

    def CountingSortTo(array: List[int]):
        """
        6 Counting Sort 计数排序
        :param
        :return:
        """
        max = min = 0
        for i in array:
            if i < min:
                min = i
            if i > max:
                max = i
        count = [0] * (max - min + 1)
        for j in range(max - min + 1):
            count[j] = 0
        for index in array:
            count[index - min] += 1
        index = 0
        for a in range(max - min + 1):
            for c in range(count[a]):
                array[index] = a + min
                index += 1

    def countingSort(array, exp1):
        """

        :param array
        :param exp1:
        :return:
        """

        n = len(array)

        # The output array elements that will have sorted arr
        output = [0] * (n)

        # initialize count array as 0
        count = [0] * (10)

        # Store count of occurrences in count[]
        for i in range(0, n):
            index = array[i] // exp1
            count[index % 10] += 1

        # Change count[i] so that count[i] now contains actual
        # position of this digit in output array
        for i in range(1, 10):
            count[i] += count[i - 1]

        # Build the output array
        i = n - 1
        while i >= 0:
            index = array[i] // exp1
            output[count[index % 10] - 1] = array[i]
            count[index % 10] -= 1
            i -= 1

        # Copying the output array to arr[],
        # so that arr now contains sorted numbers
        i = 0
        for i in range(0, len(array)):
            array[i] = output[i]


    def RadixSort(array:list):
        """
        7 Radix Sort 基数排序
        :param array
        :return:
        """
        # Find the maximum number to know number of digits
        max1 = max(array)

        # Do counting sort for every digit. Note that instead
        # of passing digit number, exp is passed. exp is 10^i
        # where i is current digit number
        exp = 1
        while max1 / exp >= 1:
            SortingAlgorithms.countingSort(array, exp)
            exp *= 10

    def insertionSort(array:list):
        """

        :return:
        """
        for i in range(1, len(array)):
            up = array[i]
            j = i - 1
            while j >= 0 and array[j] > up:
                array[j + 1] = array[j]
                j -= 1
            array[j + 1] = up
        return array

    def BucketSort(array):
        """
        8 Bucket Sort 桶排序
        :param array
        :return:
        """
        arr = []
        slot_num = 10  # 10 means 10 slots, each
        # slot's size is 0.1
        for i in range(slot_num):
            arr.append([])

        # Put array elements in different buckets
        for j in array:
            index_b = int(slot_num * j)
            arr[index_b].append(j)

        # Sort individual buckets
        for i in range(slot_num):
            arr[i] = SortingAlgorithms.insertionSort(arr[i])

        # concatenate the result
        k = 0
        for i in range(slot_num):
            for j in range(len(arr[i])):
                array[k] = arr[i][j]
                k += 1
        return array

    # Bucket Sort in Python

    def BucketSortTo(array:list):
        """
         8 Bucket Sort 桶排序
        :param array
        :return:
        """
        bucket = []

        # Create empty buckets
        for i in range(len(array)):
            bucket.append([])

        # Insert elements into their respective buckets
        for j in array:
            index_b = int(10 * j)
            bucket[index_b].append(j)

        # Sort the elements of each bucket
        for i in range(len(array)):
            bucket[i] = sorted(bucket[i])

        # Get the sorted elements
        k = 0
        for i in range(len(array)):
            for j in range(len(bucket[i])):
                array[k] = bucket[i][j]
                k += 1
        return array


    def heapify(array:list, Nsize:int, index:int):
        """

        :param array 数组
        :param Nsize: 数组长度
        :param index: 索引号
        :return:
        """
        largest = index  # Initialize largest as root
        l = 2 * index + 1  # left = 2*i + 1
        r = 2 * index + 2  # right = 2*i + 2

        # See if left child of root exists and is
        # greater than root
        if l < Nsize and array[largest] < array[l]:
            largest = l

        # See if right child of root exists and is
        # greater than root
        if r < Nsize and array[largest] < array[r]:
            largest = r

        # Change root, if needed
        if largest != index:
            array[index], array[largest] = array[largest], array[index]  # swap

            # Heapify the root.
            SortingAlgorithms.heapify(array, Nsize, largest)


    # The main function to sort an array of given size


    def HeapSort(array:list):
        """
        9 Heap Sort 堆排序
        :param array
        :return:
        """

        Nsize = len(array)

        # Build a maxheap.
        for i in range(Nsize // 2 - 1, -1, -1):
            SortingAlgorithms.heapify(array, Nsize, i)

        # One by one extract elements
        for i in range(Nsize - 1, 0, -1):
            array[i], array[0] = array[0], array[i]  # swap
            SortingAlgorithms.heapify(array, i, 0)


    def ShellSort(array:list):
        """
        10 Shell Sort 希尔排序
        :param array 数组
        :return:
        """
        # code here
        nszie=len(array)

        gap = nszie // 2

        while gap > 0:
            j = gap
            # Check the array in from left to right
            # Till the last possible index of j
            while j < nszie:
                i = j - gap  # This will keep help in maintain gap value

                while i >= 0:
                    # If value on right side is already greater than left side value
                    # We don't do swap else we swap
                    if array[i + gap] > array[i]:

                        break
                    else:
                        array[i + gap], array[i] = array[i], array[i + gap]

                    i = i - gap  # To check left side also
                    # If the element present is greater than current element
                j += 1
            gap = gap // 2

    def LinearSearch(array:list,fint:int):
        """
        11 Linear Search线性搜索
        :param array 整数数组
        :param fint 要查找的数字
        :return:
        """
        nsize=len(array)
        # Going through array sequencially
        for i in range(0, nsize):
            if (array[i] == fint):
                return i  #找到了
        return -1 #未找到

    def BinarySearch(array:list, x, low, high):
        """
        12 Binary Search  二分查找
        :param x:
        :param low:
        :param high:
        :return:
        """

        if high >= low:

            mid = low + (high - low) // 2

            # If found at mid, then return it
            if array[mid] == x:
                return mid

            # Search the left half
            elif array[mid] > x:
                return SortingAlgorithms.BinarySearch(array, x, low, mid - 1)

            # Search the right half
            else:
                return SortingAlgorithms.BinarySearch(array, x, mid + 1, high)

        else:
            return -1



    def BingoSort(array, size):
        """

        :param array
        :param size:
        :return:
        """


        # Finding the smallest element From the Array
        bingo = min(array)

        # Finding the largest element from the Array
        largest = max(array)
        nextBingo = largest
        nextPos = 0
        while bingo < nextBingo:

            # Will keep the track of the element position to
            # shifted to their correct position
            startPos = nextPos
            for i in range(startPos, size):
                if array[i] == bingo:
                    array[i], array[nextPos] = array[nextPos], array[i]
                    nextPos += 1

                #  Here we are finding the next Bingo Element
                #  for the next pass
                elif array[i] < nextBingo:
                    nextBingo = array[i]
            bingo = nextBingo
            nextBingo = largest

  

# encoding: utf-8
# 版权所有 2023 涂聚文有限公司
# 许可信息查看:
# 描述:
# Author    : geovindu,Geovin Du 涂聚文.
# IDE       : PyCharm 2023.1 python 311
# Datetime  : 2023/9/21 22:00
# User      : geovindu
# Product   : PyCharm
# Project   : EssentialAlgorithms
# File      : SortingExample.py
# explain   : 学习


import ChapterOne.SortingAlgorithms


class Example(object):
    """"
    实例
    """

    def Bubble(self):
        """
         1。Bubble Sort冒泡排序法
        :return:
        """
        data = [-2, 45, 0, 11, -9]
        ChapterOne.SortingAlgorithms.SortingAlgorithms.BubbleSort(data)
        print('\n1 冒泡排序法 Bubble Sorted Array in Ascending Order:')
        for i in range(len(data)):
            print("%d" % data[i], end=" ")

    def Select(self):
        """
        2 Selection Sort 选择排序

        :return:
        """
        geovindu = [64, 25, 12, 22, 11]
        ChapterOne.SortingAlgorithms.SortingAlgorithms.SelectionSort(geovindu)
        print("\n2 选择排序Selection Sorted ")
        for i in range(len(geovindu)):
            print("%d" % geovindu[i], end=" ")


    def Insert(self):
        """
        3 Insertion Sort插入排序
        :return:
        """
        arr = [12, 11, 13, 5, 6]
        ChapterOne.SortingAlgorithms.SortingAlgorithms.InsertionSort(arr)
        print("\n3 插入排序 Insertion Sorted ")
        for i in range(len(arr)):
            print("% d" % arr[i], end=" ")

    def Quick(self):
        """
        4 Quick Sort 快速排序
        :return:
        """
        array = [10, 7, 8, 9, 1, 5]
        N = len(array)
        # Function call
        ChapterOne.SortingAlgorithms.SortingAlgorithms.QuickSort(array, 0, N - 1)
        print("\n4 快速排序 Quick Sorted ")
        for x in array:
            print(x, end=" ")

    def Merge(self):
        """
        5 Merge Sort  合并/归并排序
        :return:
        """
        geovindu = [12, 11, 99, 13, 5, 6, 7,88,100]

        ChapterOne.SortingAlgorithms.SortingAlgorithms.MergeSort(geovindu)
        print("\n5 合并/归并排序 Merge Sorted ")
        for x in geovindu:
            print(x, end=" ")


    def Counting(self):
        """
        6 Counting Sort 计数排序
        :return:
        """
        geovindu = [17, 56, 71, 38, 61, 62, 48, 28, 57, 42]
        ChapterOne.SortingAlgorithms.SortingAlgorithms.CountingSortTo(geovindu)

        print("\n6 计数排序  Counting Sorted ")
        print(geovindu)
        for i in range(0,len(geovindu)):
            print("% d" % geovindu[i], end=" ")

        geovindu = [4, 55, 22, 98, 9, 43, 11]
        ChapterOne.SortingAlgorithms.SortingAlgorithms.CountingSort(geovindu, 100)
        print("\n6 计数排序  Counting Sorted ")
        for x in geovindu:
            print(x, end=" ")

    def Radix(self):
        """

        7 Radix Sort 基数排序
        :return:
        """
        geovindu = [170, 45, 75, 90, 802, 24, 2, 66]
        print("\n7 基数排序  Radix Sorted ")
        # Function Call
        ChapterOne.SortingAlgorithms.SortingAlgorithms.RadixSort(geovindu)

        for i in range(len(geovindu)):
            print(geovindu[i], end=" ")

    def Bucket(self):
        """
        8 Bucket Sort 桶排序
        :return:
        """
        #geovindu = [170, 45, 75, 90, 802, 24, 2, 66]
        geovindu = [0.897, 0.565, 0.656,
             0.1234, 0.665, 0.3434]
        print("\n8 桶排序  Bucket Sorted ")
        # Function Call
        du=ChapterOne.SortingAlgorithms.SortingAlgorithms.BucketSort(geovindu)
        for i in range(len(du)):
            print(du[i], end=" ")

    def Heap(self):
        """
        9 Heap Sort 堆排序
        :return:
        """
        geovindu = [170, 45, 75, 90, 802, 24, 2, 66]
        print("\n9 堆排序  Heap Sorted ")
        # Function Call
        ChapterOne.SortingAlgorithms.SortingAlgorithms.HeapSort(geovindu)

        for i in range(len(geovindu)):
            print(geovindu[i], end=" ")

    def Shell(self):
        """

        10 Shell Sort 希尔排序
        :return:
        """

        geovindu = [170, 45, 75, 90, 802, 24, 2, 66]
        print("\n10 希尔排序  Shell Sorted ")
        # Function Call
        ChapterOne.SortingAlgorithms.SortingAlgorithms.ShellSort(geovindu)

        for i in range(len(geovindu)):
            print(geovindu[i], end=" ")


    def Linear(self):
        """
        11 Linear Search 线性搜索
        :return:
        """
        array = [2, 4, 8,0, 1, 9]
        x = 8
        n = len(array)
        result = ChapterOne.SortingAlgorithms.SortingAlgorithms.LinearSearch(array,x)
        print("\n11 线性搜索  Linear Search ")
        if (result == -1):
            print("Element not found")
        else:
            print("Element found at index: ", result)

    def Binary(self):
        """
        12 Binary Search  二分查找
        :return:
        """
        array = [3, 4, 5, 6, 7, 8, 9]
        x = 4

        result = ChapterOne.SortingAlgorithms.SortingAlgorithms.BinarySearch(array, x, 0, len(array) - 1)
        print("\n12 二分查找  Binary Search ")
        if result != -1:
            print("Element is present at index " + str(result))
        else:
            print("Not found")

    def Bingo(self):
        """
        13 Bingo Sort
        :return:
        """
        arr = [5, 4, 8, 5, 4, 8, 5, 4, 4, 4]
        ChapterOne.SortingAlgorithms.SortingAlgorithms.BingoSort(arr, size=len(arr))
        print("\n13   Bingo Sorted ")
        for i in range(len(arr)):
            print(arr[i], end=" ")

  

调用:

 

    exm=BLL.SortingExample.Example()

    exm.Bubble()
    exm.Select()
    exm.Insert()
    exm.Quick()
    exm.Merge()
    exm.Counting()
    exm.Radix()
    exm.Bucket()
    exm.Heap()
    exm.Shell()
    exm.Linear()
    exm.Binary()
    exm.Bingo()

  

标签:Sorting,return,python,SortingAlgorithms,len,geovindu,range,Algorithms,array
From: https://www.cnblogs.com/geovindu/p/17725456.html

相关文章

  • python字符串的运用
    字符串str字符串[切片位置,按几个几个来切]center(填补个数,符号)两边填补Count(计算符号,区域)计算数字endweith(判断的东西)判断结尾Startweith(同上)判断开头Find(同上)字符查找isdigit是不是整数isdecimal是不是小数"连接符".join("l")拼接字......
  • python计数器
       计数器和类计数器是编程工作中常用的功能之一。今天分享一个python计数器编制方法,供大家参考。上代码:fromtkinterimport*defcounter(): globals s=s ifs: Num.set(Num.get()+1) root.after(16,counter) else: s=notsdefstop(): globals s......
  • python生成图片验证码的demo
    下面是一个使用Python生成图片验证码的简单示例:fromPILimportImage,ImageDraw,ImageFontimportrandomdefgenerate_captcha(text,width,height,font_path,font_size):#创建一个空白图片image=Image.new('RGB',(width,height),(255,255,255))dr......
  • (base) [root@pc1 test01]# conda create -n py37 python=3.7
     001、问题:conda创建python环境遇到如下问题:Collectingpackagemetadata(current_repodata.json):|DEBUG:urllib3.connectionpool:StartingnewHTTPSconnection(1):repo.anaconda.com:443 002、解决方法: ......
  • Python break 语句
    Pythonbreak语句,就像在C语言中,打破了最小封闭for或while循环。break语句用来终止循环语句,即循环条件没有False条件或者序列还没被完全递归完,也会停止执行循环语句。break语句用在while和for循环中。如果您使用嵌套循环,break语句将停止执行最深层的循环,并开始执行下一行代码。Pytho......
  • Python continue 语句
    Pythoncontinue语句跳出本次循环,而break跳出整个循环。continue语句用来告诉Python跳过当前循环的剩余语句,然后继续进行下一轮循环。continue语句用在while和for循环中。Python语言continue语句语法格式如下:continue流程图:实例:实例(Python2.0+)#!/usr/bin/python#-*-codi......
  • Python pass 语句
    Pythonpass是空语句,是为了保持程序结构的完整性。pass 不做任何事情,一般用做占位语句。Python语言pass语句语法格式如下:pass测试实例:实例#!/usr/bin/python#-*-coding:UTF-8-*-#输出Python的每个字母forletterin'Python':ifletter=='h':passpri......
  • Python 正则表达式
    正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。Python自1.5版本起增加了re模块,它提供Perl风格的正则表达式模式。re模块使Python语言拥有全部的正则表达式功能。compile函数根据一个模式字符串和可选的标志参数生成一个正则表达式对象......
  • Python CGI编程
    什么是CGICGI目前由NCSA维护,NCSA定义CGI如下:CGI(CommonGatewayInterface),通用网关接口,它是一段程序,运行在服务器上如:HTTP服务器,提供同客户端HTML页面的接口。网页浏览为了更好的了解CGI是如何工作的,我们可以从在网页上点击一个链接或URL的流程:1、使用你的浏览器访......
  • git commit 报错:找不到 python 3.8
    到这个问题的原因可能有很多,这里只是记录下针对我遇到这这跟题的原因及解决方法问题描述执行gitcommit命令,报错/usr/bin/env:‘python3.8’:Nosuchfileordirectory问题分析gitcommit命令本身不需要python,找不到python多半配置了hook去进行提交去的检查,例......