1 GNU 汇编格式
label:instruction @ comment
label 即标号,表示地址位置,有些指令前面可能会有标号,这样就可以通过这个标号得到指令的地址,标号也可以用来表示数据地址。注意 label 后面的“:”,任何以“:”结尾的标识符都会被识别为一个标号。
instruction 即指令,也就是汇编指令或伪指令。
@符号,表示后面的是注释,就跟 C 语言里面的“/”和“/”一样,其实在 GNU 汇编文件中我们也可以使用“/*”和“*/”来注释。
comment 就是注释内容。
add:
MOVS R0, #0X12 @设置 R0=0X12
注意: ARM 中的指令、伪指令、伪操作、寄存器名等可以全部使用大写,也可以全部使用小写,但是不能大小写混用
1.1伪操作
1.1.1 .section
来定义一个段,汇编系统预定义了一些段名:
.text 表示代码段。
.data 初始化的数据段。
.bss 未初始化的数据段。
.rodata 只读数据段。
定义一个 testsetcion 段
.section .testsection
汇编程序的默认入口标号是_start,不过我们也可以在链接脚本中使用 ENTRY 来指明其它的入口点。
1.1.1 .global
.global _start
_start:
ldr r0, =0x12 @r0=0x12
.global 是伪操作,表示_start 是一个全局标号,类似 C 语言里面的全局变量一样,常见的伪操作有:
.byte 定义单字节数据,比如.byte 0x12。
.short 定义双字节数据,比如.short 0x1234。
.long 定义一个 4 字节数据,比如.long 0x12345678。
.equ 赋值语句,格式为:.equ 变量名,表达式,比如.equ num, 0x12,表示 num=0x12。
.align 数据字节对齐,比如:.align 4 表示 4 字节对齐。
.end 表示源文件结束。
.global 定义一个全局符号,格式为:.global symbol,比如:.global _start。
1.2 函数定义
函数名:
函数体
返回语句
GNU 汇编函数返回语句不是必须的,如下代码就是用汇编写的Cortex-A7 中断服务函数:
/* 未定义中断 */
Undefined_Handler:
ldr r0, =Undefined_Handler
bx r0
/* SVC 中断 */
SVC_Handler:
ldr r0, =SVC_Handler
bx r0
/* 预取终止中断 */
PrefAbort_Handler:
ldr r0, =PrefAbort_Handler
bx r0
以函数 Undefined_Handler 为例我们来看一下汇编函数组成,“Undefined_Handler”就是函数名,“ldr r0, =Undefined_Handler”是函数体,“bx r0”是函数返回语句,“bx”指令是返回指令,函数返回语句不是必须的.
2 ARMv7汇编指令
2.1 数据移动指令
数据移动指令都是cpu内部寄存器之间的数据拷贝。
2.1.1 MOV
MOV R0,R1 @将寄存器 R1 中的数据传递给 R0,即 R0=R1
MOV R0, #0X12 @将立即数 0X12 传递给 R0 寄存器,即 R0=0X12
2.1.2 MRS
读取特殊寄存器的数据只能使用 MRS 指令:
MRS R0, CPSR @将 CPSR 里面的数据传递给 R0,即 R0=CPSR
2.1.3 MSR
和 MRS 刚好相反,通用寄存器写入到特殊寄存器
MSR CPSR, R0 @将 R0 中的数据复制到 CPSR 中,即 CPSR=R0
2.2 数据存取指令(访问存储器RAM)
2.2.1 LDR
数据加载指令,从指定地址读取到cpu寄存器。
LDR R0, =0X0209C004 @将寄存器地址 0X0209C004 加载到 R0 中,即 R0=0X0209C004
LDR R1, [R0] @读取地址 0X0209C004 中的数据到 R1 寄存器中
2.2.2 STR
数据存放指令,从cpu寄存器写入指定地址。
LDR R0, =0X0209C004 @将寄存器地址 0X0209C004 加载到 R0 中,即 R0=0X0209C004
LDR R1, =0X20000002 @R1 保存要写入到寄存器的值,即 R1=0X20000002
STR R1, [R0] @将 R1 中的值写入到 R0 中所保存的地址中
LDR 和 STR 都是按照4 byte进行读取和写入的,也就是操作的 32 位数据,如果要按照字节、半字进行操作的话可以在指令“LDR”后面加上 B 或 H,比如按字节操作的指令就是 LDRB 和STRB,按半字(16位)操作的指令就是 LDRH 和 STRH。
2.3 入栈出栈指令
函调调用过程中离不开现场的保护和恢复。保存 R0~R15 寄存器的操作就叫做现场保护,恢复 R0~R15 寄存器的操作就叫做恢复现场。
2.3.1 PUSH
比如要将 R0~R3 和 R12 这 5 个寄存器压栈,当前的 SP (stack pointer)指针指向 0X80000000,我们知道栈空间的地址是向下增长的,堆空间地址向上增长。
PUSH {R0~R3, R12} @将 R0~R3 和 R12 压栈
那么压栈完成以后的堆栈如下:入栈保护现场完这5个寄存器后,SP指向0X7FFFFFEC(每压栈一个寄存器,SP地址减4)
再次保存LR寄存器,进行压栈:
PUSH {LR} @将 LR 进行压栈
2.3.2 POP
POP {LR} @先恢复 LR
POP {R0~R3,R12} @在恢复 R0~R3,R12
可以看出入栈出栈本质都是对SP指针进行加减,入栈减,出栈加,入栈把寄存器依次保存进SP指向的地址去,出栈从SP地址依次取出数据。
2.3.3 STMFD和LDMFD
入栈出栈的另外一种写法是“STMFD SP!”和“LDMFD SP!”。
STMFD SP!,{R0~R3, R12} @R0~R3,R12 入栈
STMFD SP!,{LR} @LR 入栈
bl xxx
LDMFD SP!, {LR} @先恢复 LR
LDMFD SP!, {R0~R3, R12} @再恢复 R0~R3, R12
STMFD 可以分为两部分:STM 和 FD,同理,LDMFD 也可以分为 LDM 和 FD。前面我们讲了 LDR 和 STR,这两个是数据加载和存储指令,但是每次只能读写存储器中的一个数据。STM 和 LDM 就是多存储和多加载,可以连续的读写存储器中的多个连续数据。
FD 是 Full Descending 的缩写,即满递减的意思。根据 ATPCS 规则,ARM 使用的 FD 类型的堆栈,SP 指向最后一个入栈的数值,堆栈是由高地址向下增长的,也就是前面说的向下增长的堆栈,因此最常用的指令就是 STMFD 和 LDMFD。STM 和 LDM 的指令寄存器列表中编号小的对应低地址,编号高的对应高地址.
2.4 跳转指令
2.4.1 B 指令
B 指令会将 PC 寄存器的值设置为跳转目标地址,如果要调用的函数不会再返回到原来的执行处,那就可以用 B 指令.
_start:
ldr sp,=0X80200000 @设置栈指针
b main @跳转到 main 函数
在汇编中初始化 C 运行环境,然后跳转到 C 文件的 main 函数中运行,上述代码只是初始化了 SP 指针,有些处理器还需要做其他的初始化,比如初始化 DDR 等等.
2.4.2 BL 指令
有返回的跳转,跳转之前会在寄存器 LR(R14)中保存当前 PC 寄存器值,所以可以通过将 LR 寄存器中的值重新加载到 PC 中来继续从跳转之前的代码处运行,这是子程序调用一个基本但常用的手段。
比如 Cortex-A 处理器的 irq 中断服务函数都是汇编写的,主要用汇编来实现现场的保护和恢复、获取中断号等。但是具体的中断处理过程都是 C 函数,所以就会存在汇编中调用 C 函数的问题。而且当 C 语言版本的中断处理函数执行完成以后是需要返回到irq 汇编中断服务函数,因为还要处理其他的工作,一般是恢复现场。
push {r0, r1} @保存 r0,r1
cps #0x13 @进入 SVC 模式,允许其他中断再次进去
bl system_irqhandler @加载 C 语言中断处理函数到 r2 寄存器中
cps #0x12 @进入 IRQ 模式
pop {r0, r1}
str r0, [r1, #0X10] @中断执行完成,写 EOIR
跳转指令总结:
有多种跳转操作,比如:
①、直接使用跳转指令 B、BL、BX 等。
②、直接向 PC 寄存器里面写入数据。
2.5 算数运算指令
加减乘除,常用的运算指令用法:
2.6 逻辑运算指令
与或非指令用法:
3 参考链接
https://developer.arm.com/documentation/ddi0406/cd?lang=en
https://developer.arm.com/documentation/den0013/d/?lang=en