JUC并发编程
1.什么是JUC
java.util 工具包,包,分类
业务: 普通的线程代码 Thread
Runable 没有返回值,效率相比Callable相对较低!
2.线程和进程
线程、进程、如果不能使用一句话说出来的技术,不扎实!
进程:一个程序,例如 qq.exe,代表一个程序的集合
一个进程往往包含多个线程,而一个进程至少包含一个!
java的默认有几个线程?
2个,main主线程和GC垃圾回收线程
线程:开了一个进程Typora,写字,保存->(线程负责的)
对于java而言:Thread,Runnable,Callable
Java真的可以开启线程吗?为什么?答案为不能
public synchronized void start() {
/**
* This method is not invoked for the main method thread or "system"
* group threads created/set up by the VM. Any new functionality added
* to this method in the future may have to also be added to the VM.
*
* A zero status value corresponds to state "NEW".
*/
if (threadStatus != 0)
throw new IllegalThreadStateException();
/* Notify the group that this thread is about to be started
* so that it can be added to the group's list of threads
* and the group's unstarted count can be decremented. */
group.add(this);
boolean started = false;
try {
start0();
started = true;
} finally {
try {
if (!started) {
group.threadStartFailed(this);
}
} catch (Throwable ignore) {
/* do nothing. If start0 threw a Throwable then
it will be passed up the call stack */
}
}
}
//本地方法,底层为C++,Java操作虚拟机无法直接操作硬件
private native void start0();
并发和并行
并发编程:并发和并行
并发(多线程操作同意资源)
- CPU一核,模拟出来多条线程,天下武功,唯快不破,快速交替执行
并行(多个人一起行走)
- CPU多核,多个线程同时进行;多核利用线程池进行操作
package com.landu;
public class demo01 {
public static void main(String[] args) {
//获取cpu的核数
//CPU密集型,IO密集型
System.out.println(Runtime.getRuntime().availableProcessors());
}
}
并发编程的本质:充分利用CPU的资源
线程有几个状态
public enum State {
//新生
NEW,
//运行
RUNNABLE,
//阻塞
BLOCKED,
//等待,死死地等
WAITING,
//超时等待,过期不候
TIMED_WAITING,
//终止线程
TERMINATED;
}
wait和sleep的区别
1.来自不同的类
wait来自Object类中的方法,sleep来自Thread类中的方法
2.关于锁的释放
wait会释放锁,而sleep会抱着锁睡觉,不会释放锁!
3.使用的范围不同
wait必须在同步代码块中使用,而sleep可以在任何地方使用
4.是否需要捕获异常
wait需要捕获异常,而sleep也需要捕获异常
5.是否需要被唤醒
wait需要被唤醒,而sleep不用被唤醒
3.Lock锁(重点)
传统 Synchronized同步锁
package com.landu.demo01;
//基本地卖票例子
/**
* 线程就是一个单独的资源类,没有任何附属的操作!
* 1.属性和方法
*/
public class SaleTicketDemo01 {
public static void main(String[] args) {
//并发:多线程操作同一个资源类,把资源类丢入线程
Ticket ticket = new Ticket();
//@FunctionalInterface 函数式接口,在jdk1.8 Lambda表达式(参数)->{代码}
new Thread(() -> {
for (int i = 1; i < 40; i++) {
ticket.sale();
}
},"A").start();
new Thread(() -> {
for (int i = 1; i < 40; i++) {
ticket.sale();
}
},"B").start();
new Thread(() -> {
for (int i = 1; i < 40; i++) {
ticket.sale();
}
},"C").start();
}
}
//资源类 OOP思想
/**
* synchronized
*/
class Ticket {
//属性和方法
private int number = 50;
//卖票的方式
public synchronized void sale() {
if (number > 0) {
System.out.println(Thread.currentThread().getName()
+ "卖出了" + (number--) + "票,剩余" + number);
}
}
}
Lock接口
公平锁:十分公平,可以是先来后到
非公平锁:十分不公平,可以插队(默认为非公平锁)
package com.landu.demo01;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class SaleTicketDemo02 {
public static void main(String[] args) {
//并发:多线程操作同一个资源类,把资源类丢入线程
Ticket2 ticket = new Ticket2();
//@FunctionalInterface 函数式接口,在jdk1.8 Lambda表达式(参数)->{代码}
new Thread(() -> {
for (int i = 1; i < 40; i++) {
ticket.sale();
}
},"A").start();
new Thread(() -> {
for (int i = 1; i < 40; i++) {
ticket.sale();
}
},"B").start();
new Thread(() -> {
for (int i = 1; i < 40; i++) {
ticket.sale();
}
},"C").start();
}
}
//资源类 OOP思想
/**
* Lock锁三部曲
* 1.new ReentrantLock();创建锁
* 2.lock.lock(); //加锁
* 3.lock.unlock(); //解锁
*/
class Ticket2 {
//属性和方法
private int number = 50;
Lock lock = new ReentrantLock(); //创建锁
//卖票的方式
public void sale() {
lock.lock(); //加锁
try {
//业务代码
if (number > 0) {
System.out.println(Thread.currentThread().getName()
+ "卖出了" + (number--) + "票,剩余" + number);
}
}catch (Exception e) {
e.printStackTrace();
}finally {
lock.unlock(); //解锁
}
}
}
Synchronized和Lock的区别
- Synchronized是内置的java关键字,而Lock是java的一个接口
- Synchronized无法判断获取锁的状态,Lock锁可以判断是否获取到了锁
- Synchronized会自动释放锁,Lock锁必须手动释放锁!如果不释放锁,就会产生死锁
- Synchronized线程1(获得锁,阻塞状态),线程2(一直等待);Lock锁不一定会一直等待
- Synchronized是可重入锁,不可以中断,非公平锁;Lock锁,可重入锁,可以判断锁,非公平(可以自己设置)
- Synchronized适合锁少量的同步代码块,相反Lock锁适合锁大量的同步代码块!
锁是什么?如何判断锁的是谁?
4.生产者和消费者问题
生产者和消费者Synchronized版本
package com.landu.pc;
/**
* 线程之间的通信问题:生产者和消费者问题! 等待唤醒,通知唤醒
* 线程交替执行 A B 操作同一个变量 num=0
* A num+1
* B num-1
*/
public class A {
public static void main(String[] args) {
Data data = new Data();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
},"A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
},"B").start();
}
}
//判断等待,业务,通知
class Data {
private int number = 0;
//+1操作
public synchronized void increment() throws InterruptedException {
if (number != 0) {
//等待
this.wait();
}
number++;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程
this.notifyAll();
}
//-1操作
public synchronized void decrement() throws InterruptedException {
if (number == 0) {
//等待
this.wait();
}
number--;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程
this.notifyAll();
}
}
同时存在A B C D 4个线程,会产生虚假唤醒
解决方案:把if语句改为while循环,在循环体内进行判断,保证线程同一时间只能访问同一个资源,不会产出抢占资源的情况
while (number != 0) {
//等待
this.wait();
}
while (number == 0) {
//等待
this.wait();
}
Lock版生产者和消费者
传统与JUC的对比
package com.landu.pc;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class B {
public static void main(String[] args) {
Data2 data = new Data2();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
},"A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
},"B").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
},"C").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
},"D").start();
}
}
//判断等待,业务,通知
class Data2 {
private int number = 0;
Lock lock = new ReentrantLock();
//监视器的作用
Condition condition = lock.newCondition();
//+1操作
public void increment() throws InterruptedException {
lock.lock();
try {
while (number != 0) {
//等待
condition.await();
}
number++;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程
condition.signalAll();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
lock.unlock();
}
}
//-1操作
public void decrement() throws InterruptedException {
lock.lock();
try {
while (number == 0) {
//等待
condition.await();
}
number--;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程
condition.signalAll();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
lock.unlock();
}
}
}
任何一个新技术的产生,不仅仅是为了解决原技术无法解决的问题,更多的是技术自身的优势和补充
Condition 精准的通知和唤醒线程
代码测试:
package com.landu.pc;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* A执行完调用B,B执行完调用C,C执行完调用A
*/
public class C {
public static void main(String[] args) {
Data3 data3 = new Data3();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data3.printA();
}
},"A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data3.printB();
}
},"B").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data3.printC();
}
},"C").start();
}
}
class Data3 {
private Lock lock = new ReentrantLock();
private Condition condition1 = lock.newCondition();
private Condition condition2 = lock.newCondition();
private Condition condition3 = lock.newCondition();
private int number = 1;
public void printA() {
lock.lock();
try {
//业务,判断->执行->通知
while (number != 1) {
//等待
condition1.await();
}
System.out.println(Thread.currentThread().getName() + "AAAA");
number = 2;
//A执行完唤醒B
condition2.signal();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
lock.unlock();
}
}
public void printB() {
lock.lock();
try {
//业务,判断->执行->通知
while (number != 2) {
condition2.await();
}
System.out.println(Thread.currentThread().getName() + "BBBB");
number = 3;
//B执行完,唤醒C
condition3.signal();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
lock.unlock();
}
}
public void printC() {
lock.lock();
try {
//业务,判断->执行->通知
while (number != 3) {
condition3.await();
}
System.out.println(Thread.currentThread().getName() + "CCCC");
number = 1;
//C执行完,唤醒A
condition1.signal();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
lock.unlock();
}
}
}
5.8锁现象
如何判断锁的是谁?为什么会产生锁的概念?
new出来的对象,Class模板
package com.landu.lock8;
import java.util.concurrent.TimeUnit;
/**
* 1.标志情况下,先输出发短信还是打电话? 1.发短信 2.打电话
* 2.发短信延迟4s,先输出发短信还是打电话? 1.发短信 2.打电话
*/
@SuppressWarnings("all")
public class Test1 {
public static void main(String[] args) {
Phone phone = new Phone();
new Thread(()->{
phone.sendMessage();
},"A").start();
//休息一秒
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
new Thread(()->{
phone.call();
},"B").start();
}
}
class Phone {
/**
* synchronized 锁的对象是方法的调用者,
* 两个方法用的是同一个锁,谁先拿到谁先执行
*/
public synchronized void sendMessage() {
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println("发短信");
}
public synchronized void call() {
System.out.println("打电话");
}
}
package com.landu.lock8;
import java.util.concurrent.TimeUnit;
/**
* 3.增加一个普通方法,先执行hello还是发短信? 1.hello 2.发短信
* 4.两个对象,两个同步方法,先执行打电话还是发短信? 1.打电话 2.发短信
*/
@SuppressWarnings("all")
public class Test2 {
public static void main(String[] args) {
//两个对象,两把锁,两个调用者
Phone2 phone1 = new Phone2();
Phone2 phone2 = new Phone2();
new Thread(()->{
phone1.sendMessage();
},"A").start();
//休息一秒
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
new Thread(()->{
phone2.call();
},"B").start();
}
}
class Phone2 {
/**
* synchronized 锁的对象是方法的调用者,
* 两个方法用的是同一个锁,谁先拿到谁先执行
*/
public synchronized void sendMessage() {
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println("发短信");
}
public synchronized void call() {
System.out.println("打电话");
}
//hello方法没有加锁,不会受到锁的影响
public void hello() {
System.out.println("hello");
}
}
package com.landu.lock8;
import java.util.concurrent.TimeUnit;
/**
* 5.增加两个静态的方法,只有一个对象,先打印发短信还是打电话? 1.发短信 2.打电话
* 6.两个对象,增加两个静态的方法,先打印发短信还是打电话? 1.发短信 2.打电话
*/
@SuppressWarnings("all")
public class Test3 {
public static void main(String[] args) {
//两个对象的Class类模板只有一个,static锁的是Class
Phone3 phone1 = new Phone3();
Phone3 phone2 = new Phone3();
new Thread(()->{
phone1.sendMessage();
},"A").start();
//休息一秒
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
new Thread(()->{
phone2.call();
},"B").start();
}
}
class Phone3 {
/**
* synchronized 锁的对象是方法的调用者,
* static 是静态方法,在类一加载的时候就有了,锁的是Class模板Phone3.class
* Class<Phone3> phone3Class = Phone3.class;
*/
public static synchronized void sendMessage() {
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println("发短信");
}
public static synchronized void call() {
System.out.println("打电话");
}
}
package com.landu.lock8;
import java.util.concurrent.TimeUnit;
/**
*7.一个是静态同步方法发短信,一个是同步方法打电话,先打印哪一个?1.打电话 2.发短信
* 8.一个是静态同步方法发短信,一个是同步方法打电话,两个对象,先打印哪一个?1.打电话 2.发短信
*/
@SuppressWarnings(value = "all")
public class Test4 {
public static void main(String[] args) {
Phone4 phone1 = new Phone4();
Phone4 phone2 = new Phone4();
new Thread(()->{
phone1.sendMessage();
},"A").start();
//休息一秒
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
new Thread(()->{
phone2.call();
},"B").start();
}
}
class Phone4 {
//静态的同步方法,static锁的是class模板
public static synchronized void sendMessage() {
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println("发短信");
}
//普通的同步方法,锁的是方法的调用者
public synchronized void call() {
System.out.println("打电话");
}
}
小结
new 指的是一个具体的对象,而static锁的是一个class模板
6.集合类不安全
List集合不安全
package com.landu.unsafe;
import java.io.Serializable;
import java.util.*;
import java.util.concurrent.CopyOnWriteArrayList;
@SuppressWarnings("all")
//java.util.ConcurrentModificationException 线程并发异常
public class ListTest {
public static void main(String[] args) {
//并发下ArrayList是不安全的
List<String> list = new CopyOnWriteArrayList<>();
/**
* 解决方案:
* 1.List<String> list = new Vector<>();Vector加了synchronized保证同步
* 2.Collections.synchronizedList(new ArrayList<>());集合的同步方法
* 3.List<String> list = new CopyOnWriteArrayList<>();线程安全的
*/
/**
* CopyOnWrite 写入时复制 cow 计算机程序设计领域的一种优化策略,
* 多个线程调用list,读取是固定的,写入避免直接覆盖原数组,造成数据问题
* 读写分离的思想
*/
for (int i = 1; i <= 10; i++) {
new Thread(()->{
list.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(list);
},String.valueOf(i)).start();
}
}
}
Set不安全
package com.landu.unsafe;
import java.util.Collections;
import java.util.HashSet;
import java.util.Set;
import java.util.UUID;
import java.util.concurrent.CopyOnWriteArraySet;
//java.util.ConcurrentModificationException 并发修改异常
@SuppressWarnings("all")
public class SetTest {
public static void main(String[] args) {
// Set<String> set = new HashSet<>();
Set<String> set = new CopyOnWriteArraySet<>();
/**
* 解决方案:
* 1.Set<String> set = Collections.synchronizedSet(new HashSet<>());集合安全的
* 2.Set<String> set = new CopyOnWriteArraySet<>();线程安全的
*/
for (int i = 1; i <= 30; i++) {
new Thread(()->{
set.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(set);
},String.valueOf(i)).start();
}
}
}
Hashset的底层是什么?
public HashSet() {
map = new HashMap<>();
}
//add方法 set本质就是map,key值是无法重复的且无序,value为一个默认值PRESENT
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
HashMap不安全
package com.landu.unsafe;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.UUID;
import java.util.concurrent.ConcurrentHashMap;
//java.util.ConcurrentModificationException 并发修改异常
@SuppressWarnings("all")
public class MapTest {
public static void main(String[] args) {
//map是这样用的吗? 不是,工作中不用hashmap
//默认等价于什么?new HashMap<>(16,0.75);
// Map<String, String> map = new HashMap<>();
Map<String, String> map = new ConcurrentHashMap<>();
/**
* 解决方案:
* 1.Map<String, String> map = Collections.synchronizedMap(new HashMap<>());集合安全的
* 2.Map<String, String> map = new ConcurrentHashMap<>();线程安全的
*/
for (int i = 1; i <= 10; i++) {
new Thread(()->{
map.put(Thread.currentThread().getName()
,UUID.randomUUID().toString().substring(0,5));
System.out.println(map);
},String.valueOf(i)).start();
}
}
}
7.Callable
-
可以有返回值
-
可以抛出异常
-
Runnable的方法为run(),而Callable方法为call()
代码测试
package com.landu.callable;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
@SuppressWarnings("all")
public class CallableTest {
public static void main(String[] args) {
//传统方式功能有限
// new Thread(new MyThread()).start();
/**
* new Thread(new Runnable()).start();
* new Thread(new FutureTask<String>(Callable)).start();
*/
MyThread myThread = new MyThread();
FutureTask<String> task = new FutureTask<String>(myThread); //适配类
new Thread(task,"A").start();
new Thread(task,"B").start(); //结果会被缓存,效率高
//获取返回值
String s = null;
try {
s = task.get(); //这个get方法可能会产生阻塞,把他放到最后
} catch (InterruptedException e) {
throw new RuntimeException(e);
} catch (ExecutionException e) {
throw new RuntimeException(e);
}
//或者使用异步通信来处理
System.out.println(s);
}
}
class MyThread implements Callable<String> {
@Override
public String call() {
System.out.println("call()");
//耗时的操作
return "123";
}
}
- 有缓存
- 结果可能需要等待,会阻塞
8.常用的辅助类
8.1 CountDownLatch
package com.landu.add;
import java.util.concurrent.CountDownLatch;
//减法计数器
@SuppressWarnings("all")
public class CountDownLatchDemo {
public static void main(String[] args) throws InterruptedException {
//总数为6,在执行一些必要的任务,再使用!
CountDownLatch count = new CountDownLatch(6);
for (int i = 0; i < 6; i++) {
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + "go out");
count.countDown(); //数量减一
},String.valueOf(i)).start();
}
count.await(); //等待计数器归0,然后向下执行
System.out.println("close door");
}
}
原理:
count.countDown();
//数量减一
count.await();
//等待计数器归0,然后向下执行
每次有线程调用countDown()数量-1,假设计数器变为0,count.await();方法就会被唤醒,继续执行
8.2 CyclicBarrier
package com.landu.add;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
//加法计数器
@SuppressWarnings("all")
public class CyclicBarrierDemo {
public static void main(String[] args) throws BrokenBarrierException, InterruptedException {
CyclicBarrier barrier = new CyclicBarrier(12,()->{
System.out.println("数量到10关门");
});
for (int i = 0; i < 10; i++) {
//lamdba表达式不能直接操作i
final int temp = i;
new Thread(()->{
System.out.println(Thread.currentThread().getName() + "open door" + temp);
try {
barrier.await();
} catch (InterruptedException e) {
throw new RuntimeException(e);
} catch (BrokenBarrierException e) {
throw new RuntimeException(e);
}
},String.valueOf(i)).start();
}
}
}
8.3 Semaphore
Semaphore:信号量
package com.landu.add;
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;
//信号量
@SuppressWarnings("all")
public class SemaphoreDemo {
public static void main(String[] args) {
//信号量,假设有3个停车位,6个车
Semaphore semaphore = new Semaphore(3);
for (int i = 1; i <= 6; i++) {
new Thread(()->{
try {
//得到车位
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + "抢到车位");
//等待几秒
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName() + "离开车位");
} catch (InterruptedException e) {
throw new RuntimeException(e);
}finally {
//释放资源
semaphore.release();
}
},String.valueOf(i)).start();
}
}
}
原理:
semaphore.acquire();
获得,假设如果已经满了,等待,等待被释放!
semaphore.release();
释放,会将当前的信号量+1,然后唤醒等待的线程!
作用:多个共享资源互斥的使用!并发限流,控制最大线程数!
9.读写锁
package com.landu.readandwrite;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
* ReadWriteLock,读写锁
* 独占锁(写锁)
* 共享锁(读锁)
*/
@SuppressWarnings("all")
public class ReadWriteLockDemo {
public static void main(String[] args) {
MyCacheLock myCache = new MyCacheLock();
//写入
for (int i = 1; i <= 6; i++) {
final int temp = i;
new Thread(()->{
myCache.put(temp+"",temp+"");
},String.valueOf(i)).start();
}
//读取
for (int i = 1; i <= 6; i++) {
final int temp = i;
new Thread(()->{
myCache.get(temp+"");
},String.valueOf(i)).start();
}
}
}
/**
* 自定义缓存
*/
@SuppressWarnings("all")
class MyCacheLock {
private volatile Map<String, Object> map = new HashMap<>();
private ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
//存储就是写入的过程
public void put(String key,Object value) {
readWriteLock.writeLock().lock();
ReadWriteLock lock = new ReentrantReadWriteLock();
try {
System.out.println(Thread.currentThread().getName() + "写入" + key);
map.put(key,value);
System.out.println(Thread.currentThread().getName() + "写入ok");
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
readWriteLock.writeLock().unlock();
}
}
//获取就是读取的过程
public void get(String key) {
readWriteLock.readLock().lock();
try {
System.out.println(Thread.currentThread().getName() + "读取" + key);
Object o = map.get(key);
System.out.println(Thread.currentThread().getName() + "读取ok");
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
readWriteLock.readLock().unlock();
}
}
}
@SuppressWarnings("all")
class MyCache {
private volatile Map<String, Object> map = new HashMap<>();
//存储就是写入的过程
public void put(String key,Object value) {
System.out.println(Thread.currentThread().getName() + "写入" + key);
map.put(key,value);
System.out.println(Thread.currentThread().getName() + "写入ok");
}
//获取就是读取的过程
public void get(String key) {
System.out.println(Thread.currentThread().getName() + "读取" + key);
Object o = map.get(key);
System.out.println(Thread.currentThread().getName() + "读取ok");
}
}
10.阻塞队列
什么情况下使用阻塞队列:多线程并发处理,线程池!
四组API
方式 | 抛出异常 | 有返回值 | 阻塞等待 | 超时等待 |
---|---|---|---|---|
添加 | add | offer() | put() | offer(,,,) |
移除 | remove | poll() | take() | poll(,,) |
判断队列首 | element | peek() | - | - |
package com.landu.bq;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
/**
* 1.抛出异常
*/
@SuppressWarnings("all")
public class BqTest1 {
public static void main(String[] args) {
BlockingQueue<String> queue1 = new ArrayBlockingQueue<>(3);
System.out.println(queue1.add("a"));
System.out.println(queue1.add("b"));
System.out.println(queue1.add("c"));
/**
* 容量为3,添加第四个,抛出异常 IllegalStateException Queue full,
* 队列已满,无法再添加
*/
// System.out.println(queue1.add("d"));
System.out.println(queue1.remove());
System.out.println(queue1.remove());
System.out.println(queue1.remove());
/**
* 只有三个元素,移除第四个抛出异常,NoSuchElementException
* 没有元素异常
*/
// System.out.println(queue1.remove());
}
}
package com.landu.bq;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
/**
* 2.有返回值
*/
@SuppressWarnings("all")
public class BqTest2 {
public static void main(String[] args) {
BlockingQueue<String> queue2 = new ArrayBlockingQueue<>(3);
System.out.println(queue2.offer("a"));
System.out.println(queue2.offer("b"));
System.out.println(queue2.offer("c"));
/**
* 容量为3,添加第四个会返回false
*/
// System.out.println(queue2.offer("d"));
System.out.println(queue2.poll());
System.out.println(queue2.poll());
System.out.println(queue2.poll());
/**
* 只有三个元素,移除第四个会返回null
*
*/
// System.out.println(queue2.poll());
}
}
package com.landu.bq;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
/**
* 3.一直等待
*/
@SuppressWarnings("all")
public class BqTest3 {
public static void main(String[] args) throws InterruptedException {
BlockingQueue<String> queue3 = new ArrayBlockingQueue<String>(3);
queue3.put("a");
queue3.put("a");
queue3.put("a");
/**
* 容量为3,put第四个就阻塞等待
*/
// queue3.put("a");
System.out.println(queue3.take());
System.out.println(queue3.take());
System.out.println(queue3.take());
/**
* 容量为3,take第四个就阻塞等待第四个进入后再弹出
*/
// System.out.println(queue3.take());
}
}
package com.landu.bq;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
/**
* 4.超时等待,过时不候
*/
@SuppressWarnings("all")
public class BqTest4 {
public static void main(String[] args) throws InterruptedException {
BlockingQueue<String> queue4 = new ArrayBlockingQueue<String>(3);
System.out.println(queue4.offer("a"));
System.out.println(queue4.offer("b"));
System.out.println(queue4.offer("c"));
/**
* 容量为3,添加第四个就会等待2秒,
* 2秒后如果添加不进去,结束等待,给出fasle
*/
// System.out.println(queue4.offer("d", 2, TimeUnit.SECONDS));
System.out.println(queue4.poll());
System.out.println(queue4.poll());
System.out.println(queue4.poll());
/**
* 等待两秒弹出,如果没有,返回null
*/
// System.out.println(queue4.poll(2,TimeUnit.SECONDS));
}
}
SynchronousQueue 同步队列
顾名思义:可以在队列中存储一个元素,这个元素被取出来才能存下一个,否则就等待
存put,取take
package com.landu.bq;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.TimeUnit;
/**
* 同步队列
* put一次,如果不取出,就会一直等待线程不终止
*/
@SuppressWarnings("all")
public class SynchronousQueueDemo {
public static void main(String[] args) {
BlockingQueue queue = new SynchronousQueue();
new Thread(()->{
try {
System.out.println(Thread.currentThread().getName() + "put 1");
queue.put("1");
System.out.println(Thread.currentThread().getName() + "put 2");
queue.put("2");
System.out.println(Thread.currentThread().getName() + "put 3");
queue.put("3");
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
},"T1").start();
new Thread(()->{
try {
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName()+ "=>" + queue.take());
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName()+ "=>" + queue.take());
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName()+ "=>" + queue.take());
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
},"T2").start();
}
}
11.线程池(重点)
池化技术
程序的运行的本质:占用系统的资源!优化资源的使用!=>池化技术
线程池,连接池,内存池,对象池 =>线程池的创建和销毁十分的浪费系统资源
池化技术:事先预备一些资源以提供程序的使用,在程序使用完毕之后,再把资源还给池子
线程池的好处:
- 降低了对资源的消耗
- 提高了相应的速度
- 创建的线程池,能够统一管理
线程复用,可以控制最大并发数,管理线程
线程池:三大方法
package com.landu.pool;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/**
*Executors 线程工具类 3大方法
*/
@SuppressWarnings("all")
public class Demo01 {
public static void main(String[] args) {
//创建单个线程
// ExecutorService threadPool = Executors.newSingleThreadExecutor();
//创建固定的线程池大小
// ExecutorService threadPool = Executors.newFixedThreadPool(5);
//创建可伸缩的线程池,遇强则强,遇弱则弱
ExecutorService threadPool = Executors.newCachedThreadPool();
try {
//初始化10个任务
/**
* 分配的资源已经远远大于系统的最大资源数,抛出异常,OutOfMemoryError内存溢出异常
*/
for (int i = 1; i <= 10; i++) {
//使用线程池来创建线程
threadPool.execute(()->{
System.out.println(Thread.currentThread().getName() + " ok");
});
}
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
//程序结束后,关闭线程池
threadPool.shutdown();
}
}
}
七大参数
源码分析:
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
// 本质:ThreadPoolExecutor()
public ThreadPoolExecutor(int corePoolSize, // 核心线程大小
int maximumPoolSize, // 最大核心线程大小
long keepAliveTime, // 超时了,没有人调用,就会释放
TimeUnit unit, // 超时单位
BlockingQueue<Runnable> workQueue, // 阻塞队列
ThreadFactory threadFactory, // 线程工厂,创建线程的,一般不用动
RejectedExecutionHandler handler // 拒绝策略) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.acc = System.getSecurityManager() == null ?
null :
AccessController.getContext();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
手动创建线程池
package com.landu.pool;
import java.util.concurrent.*;
/**
*ThreadPoolExecutor 自定义线程池
* ThreadPoolExecutor.AbortPolicy() 出现java.util.concurrent.RejectedExecutionException 拒绝执行异常
* ThreadPoolExecutor.CallerRunsPolicy() main线程来处理,哪来的回哪去
* ThreadPoolExecutor.DiscardPolicy() 队列满了,丢掉任务,不会抛出异常
* ThreadPoolExecutor.DiscardOldestPolicy() 队列满了,尝试去和最早的竞争,也不会抛出异常
*/
@SuppressWarnings("all")
public class Demo01 {
public static void main(String[] args) {
ExecutorService executorService = Executors.newSingleThreadExecutor();
ExecutorService threadPool = new ThreadPoolExecutor(
2,
5,
2,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy()
);
try {
/**
* 最大并发数为8个,是最大核心数加阻塞队列数
*/
for (int i = 1; i <= 9; i++) {
//使用线程池来创建线程
threadPool.execute(()->{
System.out.println(Thread.currentThread().getName() + " ok");
});
}
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
//程序结束后,关闭线程池
threadPool.shutdown();
}
}
}
四种拒绝策略
/**
*ThreadPoolExecutor 自定义线程池
* ThreadPoolExecutor.AbortPolicy() 出现java.util.concurrent.RejectedExecutionException 拒绝执行异常
* ThreadPoolExecutor.CallerRunsPolicy() main线程来处理,哪来的回哪去
* ThreadPoolExecutor.DiscardPolicy() 队列满了,丢掉任务,不会抛出异常
* ThreadPoolExecutor.DiscardOldestPolicy() 队列满了,尝试去和最早的竞争,也不会抛出异常
*/
小结和拓展
/**
* 最大线程如何定义:
* 1.cpu密集型:cpu有几核,最大线程数就设置为几
* 2.IO密集型:判断你程序中十分消耗io资源的任务,大于任务的数量的两倍就行
*/
//获取运行时的核数
System.out.println(Runtime.getRuntime().availableProcessors());
12.四大函数式接口
了解:lambda表达式,链式编程,函数式接口,Stream流式计算
函数式接口:只有一个方法的接口
@FunctionalInterface
public interface Runnable {
/**
* When an object implementing interface <code>Runnable</code> is used
* to create a thread, starting the thread causes the object's
* <code>run</code> method to be called in that separately executing
* thread.
* <p>
* The general contract of the method <code>run</code> is that it may
* take any action whatsoever.
*
* @see java.lang.Thread#run()
*/
public abstract void run();
}
Function:函数式接口
package com.landu.function;
import java.util.function.Function;
/**
* Function 函数型接口
* 只要是函数式接口,可以用lambda表达式简化
*/
@SuppressWarnings("all")
public class Demo01 {
public static void main(String[] args) {
Function<String,String> function = new Function<String,String>() {
@Override
public String apply(String o) {
return o;
}
};
Function<String,String> function1 = (str)->{return str;};
String asd = function1.apply("asd");
System.out.println(asd);
}
}
Predicate:断定式接口
package com.landu.function;
import java.util.function.Predicate;
/**
* Predicate 断定式接口,有一个参数,返回值只能是布尔值
*
*/
@SuppressWarnings("all")
public class Demo02 {
public static void main(String[] args) {
Predicate<String> predicate = new Predicate<String>() {
@Override
public boolean test(String s) {
if (!s.equals("hello")) return false;
else return true;
}
};
Predicate<String> predicate1 = str->{return str.isEmpty();};
System.out.println(predicate1.test("asd"));
}
}
Consumer 消费型接口
package com.landu.function;
import java.util.function.Consumer;
/**
* Consumer 消费型接口:只有输入,没有返回值
*/
@SuppressWarnings("all")
public class Demo03 {
public static void main(String[] args) {
// Consumer<String> consumer = new Consumer<String>() {
// @Override
// public void accept(String str) {
// System.out.println(str);
// }
// };
Consumer<String> consumer = (str)->{
System.out.println(str);
};
consumer.accept("asd");
}
}
Supplier 供给型接口
package com.landu.function;
import java.util.function.Supplier;
/**
* Supplier 供给型接口:没有输入值,获取返回值
*/
public class Demo04 {
public static void main(String[] args) {
// Supplier<String> supplier = new Supplier<String>() {
// @Override
// public String get() {
// return "hello";
// }
// };
Supplier<String> supplier = ()->{return "hello";};
String s = supplier.get();
System.out.println(s);
}
}
13.Stream流式计算
什么是Stream流式计算
大数据:存储+计算
集合包括mysql本质就是存储东西的
计算都应该交给流来操作
package com.landu.stream;
import java.util.Arrays;
import java.util.List;
/**
* 题目要求:
* 1.id必须为偶数
* 2.年龄必须大于25岁
* 3.用户名转为大写字母
* 4.用户名字符倒着排序
* 5.只输出一个用户
*/
public class Test {
public static void main(String[] args) {
User u1 = new User(1,"a",21);
User u2 = new User(2,"b",22);
User u3 = new User(3,"c",23);
User u4 = new User(4,"d",24);
User u5 = new User(5,"e",25);
User u6 = new User(6,"f",26);
//集合用来存储
List<User> list = Arrays.asList(u1, u2, u3, u4, u5,u6);
//流式用来计算
list.stream()
.filter(u->{return u.getId() % 2 == 0;})
.filter(u->{return u.getAge() > 23;})
.map(u->{return u.getName().toUpperCase();})
.sorted((o1, o2) -> o2.compareTo(o1))
.limit(1)
.forEach(System.out::println);
}
}
14.ForkJoin
分支合并
ForkJoin 工作窃取
维护的是双端队列,在B线程优先执行完自己的任务,A线程还没有执行完,B线程会窃取A线程的任务
ForkJoin 计算
package com.landu.forkJoin;
import java.util.concurrent.RecursiveTask;
/**
* 求和计算
*/
@SuppressWarnings("all")
public class ForkJoinDemo extends RecursiveTask<Long> {
private Long start;
private Long end;
//临界值
private Long temp = 10000L;
public ForkJoinDemo(Long start,Long end) {
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
if ((end - start) < temp) {
Long sum = 0L;
for (Long i = start; i <= end; i++) {
sum += i;
}
return sum;
}else {
//分支合并计算 forkjoin
Long mid = (start + end) / 2;
//把task1的任务压入线程里面
ForkJoinDemo task1 = new ForkJoinDemo(start, mid);
task1.fork();
//把task2的任务压入线程里面
ForkJoinDemo task2 = new ForkJoinDemo(mid+1, end);
task2.fork();
return task1.join() + task2.join();
}
}
}
package com.landu.forkJoin;
import org.omg.PortableServer.POA;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;
@SuppressWarnings("all")
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//test1(); // 9175
//test2(); // 4261
test3(); // 203
}
public static void test1() {
Long sum = 0L;
long start = System.currentTimeMillis();
for (Long i = 1L;i <= 10_0000_0000;i++) {
sum +=i;
}
long end = System.currentTimeMillis();
System.out.println("sum=" + sum + " 时间:" + (end - start));
}
public static void test2() throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis();
ForkJoinPool pool = new ForkJoinPool();
ForkJoinDemo forkJoinDemo = new ForkJoinDemo(0L, 10_0000_0000l);
ForkJoinTask<Long> submit = pool.submit(forkJoinDemo);
Long sum = submit.get();
long end = System.currentTimeMillis();
System.out.println("sum=" + sum + " 时间:" + (end - start));
}
//Stream流计算
public static void test3() {
long start = System.currentTimeMillis();
long sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, Long::sum);
long end = System.currentTimeMillis();
System.out.println("sum=" + sum + " 时间:" + (end - start));
}
}
15.异步回调
Future 设计的初衷:对将来的某个事件进行建模
package com.landu.Future;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
/**
* 异步回调: CompletableFuture
* 1.异步执行
* 2.成功回调
* 3.失败回调
*/
public class Demo01 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//没有返回值的异步回调 runAsync
// CompletableFuture<Void> future = CompletableFuture.runAsync(()->{
// try {
// TimeUnit.SECONDS.sleep(2);
// } catch (Exception e) {
// throw new RuntimeException(e);
// }
// System.out.println(Thread.currentThread().getName() + "future=>Void");
// });
//
// System.out.println("hello");
// future.get();
//有返回值的异步回调 supplyAsync
CompletableFuture<Integer> future = CompletableFuture.supplyAsync(()->{
System.out.println(Thread.currentThread().getName() + "supplyAsync=>Integer");
int i = 10/0;
return 1024;
});
System.out.println(future.whenComplete((t, u) -> {
System.out.println("t=>" + t); //获取正常的结果
System.out.println("u=>" + u); // 错误信息:java.lang.ArithmeticException: / by zero
}).exceptionally((e) -> {
e.getMessage(); //获取错误信息
return 233; //返回错误结果
}).get());
/**
* success code 200
* error code 404 500
*/
}
}
16.JMM
请你谈谈对Volatile的理解
Volatile:是Java虚拟机提供的轻量级的同步机制
- 保证可见性
- 不保证原子性
- 禁止指令重排
什么是JMM
JMM:Java内存模型,一种约定
关于一些JMM的同步约定
- 线程解锁前,必须把共享变量立刻刷回主存
- 线程加锁前,必须读取主存中的最新值到工作内存中
- 加锁和解锁是同一把锁
线程:工作内存,主内存
8种操作:
package com.landu.cvolatile;
import java.util.concurrent.TimeUnit;
@SuppressWarnings("all")
public class JMMDemo {
private static int num = 0;
//启动一个main线程和子线程
public static void main(String[] args) {
new Thread(()->{
while (num == 0) {
}
}).start();
try {
TimeUnit.SECONDS.sleep(3);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
num = 1;
System.out.println(1);
}
}
17.Volatile
1.保证可见性
package com.landu.cvolatile;
import java.util.concurrent.TimeUnit;
@SuppressWarnings("all")
public class JMMDemo {
//添加volatile关键字保证了可见性
private volatile static int num = 0;
//启动一个main线程和子线程
public static void main(String[] args) {
new Thread(()->{
while (num == 0) {
}
}).start();
try {
TimeUnit.SECONDS.sleep(3);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
num = 1;
System.out.println(1);
}
}
2.不保证原子性
原子性:不可分割
线程A在执行任务的时候,不能被打扰的,也不能被分割。要么同时成功,要么同时失败
package com.landu.cvolatile;
//不保证原子性
@SuppressWarnings("all")
public class VDemo02 {
//volatile不保证原子性操作
private volatile static int num = 0;
public static void add() {
num++;
}
public static void main(String[] args) {
for (int i = 1; i <= 20 ; i++) {
new Thread(()->{
for (int j = 0; j < 1000; j++) {
add();
}
}).start();
}
//默认两个线程为main线程和gc线程
while (Thread.activeCount() > 2) {
Thread.yield();
}
System.out.println(Thread.currentThread().getName() + " " + num);
}
}
如果不加lock和synchronized,怎样保证原子性?
package com.landu.cvolatile;
import java.util.concurrent.atomic.AtomicInteger;
//不保证原子性
@SuppressWarnings("all")
public class VDemo02 {
//volatile不保证原子性操作
//AtomicInteger 原子类来保证原子性操作
private volatile static AtomicInteger num = new AtomicInteger(0);
public static void add() {
// num++;
num.getAndIncrement();
}
public static void main(String[] args) {
for (int i = 1; i <= 20 ; i++) {
new Thread(()->{
for (int j = 0; j < 1000; j++) {
add();
}
}).start();
}
//默认两个线程为main线程和gc线程
while (Thread.activeCount() > 2) {
Thread.yield();
}
System.out.println(Thread.currentThread().getName() + " " + num);
}
}
3.禁止指令重排
什么是指令重排:你写的程序,计算机并不是按照你写的那样去执行的
源代码->编译器优化重排->指令并行也可能重排->内存系统也会重排->执行代码
处理器在进行指令重排的时候,考虑:数据之间的依赖性!
volatile可以避免指令重排:
内存屏障,cpu指令作用:
1.保证特定的操作执行顺序
2.可以保证某些变量的内存可见性(利用这些特性volatile实现了可见性)
19.深入理解CAS
Unsafe类
package com.landu.cas;
import java.util.concurrent.atomic.AtomicInteger;
//CAS compareAndSet 比较并交换
//如果期望值达到了,就更新,否则就不更新
@SuppressWarnings("all")
public class casDemo {
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(2020);
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger);
System.out.println(atomicInteger.compareAndSet(2020, 2023));
System.out.println(atomicInteger);
atomicInteger.getAndIncrement();
}
}
CAS缺点:
- 循环会耗时间
- 一次性只能保证一个共享变量的原子性
- ABA问题
ABA问题
package com.landu.cas;
import java.util.concurrent.atomic.AtomicInteger;
//CAS compareAndSet 比较并交换
//如果期望值达到了,就更新,否则就不更新
@SuppressWarnings("all")
public class casDemo {
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(2020);
//正常的线程期望值为2020
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger);
//插入一个捣乱的线程进行修改
System.out.println(atomicInteger.compareAndSet(2021, 2020));
System.out.println(atomicInteger);
//期望的线程
System.out.println(atomicInteger.compareAndSet(2020, 2023));
System.out.println(atomicInteger);
}
}
20.原子引用
带版本号的原子引用
package com.landu.cas;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicStampedReference;
//CAS compareAndSet 比较并交换
//如果期望值达到了,就更新,否则就不更新
@SuppressWarnings("all")
public class casDemo {
public static void main(String[] args) {
AtomicStampedReference<String> reference = new AtomicStampedReference<String>("2020",1);
new Thread(()->{
int stamp = reference.getStamp();
System.out.println( "a1=>"+ stamp);
//a线程休眠1秒
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
//进行修改
System.out.println(reference.compareAndSet("2020", "2023",
reference.getStamp(), reference.getStamp()+1));
System.out.println("a2=>"+ reference.getStamp());
//再改回来
System.out.println(reference.compareAndSet("2023", "2020"
, reference.getStamp(), reference.getStamp()+ 1));
System.out.println("a3=>"+ reference.getStamp());
},"a").start();
new Thread(()->{
int stamp = reference.getStamp();
System.out.println("b1=>" + stamp);
//b线程休眠3秒
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println(reference.compareAndSet("2020", "6666",
stamp, stamp + 1));
System.out.println("b2=>" + reference.getStamp());
},"b").start();
}
}
21.各种锁的理解
1.公平锁和非公平锁
公平锁:顾名思义,非常公平,必须先来后到!
非公平锁:顾名思义,非常不公平,可以插队!
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
2.可重入锁
拿到外面的锁,相当于也拿到了里面的锁
package com.landu.lock;
//Synchronized
@SuppressWarnings("all")
public class Demo01 {
public static void main(String[] args) {
Phone phone = new Phone();
new Thread(()->{
phone.message();
},"A").start();
new Thread(()->{
phone.message();
},"B").start();
}
}
class Phone {
public synchronized static void message() {
System.out.println(Thread.currentThread().getName() + " message");
call();
}
public synchronized static void call() {
System.out.println(Thread.currentThread().getName() + " call");
}
}
package com.landu.lock;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
//Lock
@SuppressWarnings("all")
public class Demo02 {
public static void main(String[] args) {
Phone2 phone2 = new Phone2();
new Thread(()->{
phone2.message();
},"A").start();
new Thread(()->{
phone2.message();
},"B").start();
}
}
class Phone2 {
Lock lock = new ReentrantLock();
public void message() {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + " message");
call();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
lock.unlock();
}
}
public void call() {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + " call");
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
lock.unlock();
}
}
}
3.自旋锁
package com.landu.lock;
import java.util.concurrent.atomic.AtomicReference;
//自旋锁
@SuppressWarnings("all")
public class SpinlockDemo {
AtomicReference<Thread> atomicReference = new AtomicReference();
//加锁
public void myLock() {
Thread thread = Thread.currentThread();
System.out.println(Thread.currentThread().getName() + "==> myLock");
//自旋锁
while (!atomicReference.compareAndSet(null,thread)) {
}
}
//解锁
public void myUnLock() {
Thread thread = Thread.currentThread();
System.out.println(Thread.currentThread().getName() + "==> myUnLock");
atomicReference.compareAndSet(thread,null);
}
}
package com.landu.lock;
import java.util.concurrent.TimeUnit;
public class TestSpinlock {
public static void main(String[] args) throws InterruptedException {
SpinlockDemo spinlockDemo = new SpinlockDemo();
new Thread(()->{
spinlockDemo.myLock();
try {
TimeUnit.SECONDS.sleep(3);
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
spinlockDemo.myUnLock();
}
},"T1").start();
TimeUnit.SECONDS.sleep(1);
new Thread(()->{
spinlockDemo.myLock();
try {
TimeUnit.SECONDS.sleep(1);
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
spinlockDemo.myUnLock();
}
},"T2").start();
}
}
4.死锁
package com.landu.lock;
import java.util.concurrent.TimeUnit;
//死锁
@SuppressWarnings("all")
public class DeadLockDemo {
public static void main(String[] args) {
String lockA = "lockA";
String lockB = "lockB";
new Thread(new MyThread(lockA,lockB),"T1").start();
new Thread(new MyThread(lockB,lockA),"T1").start();
}
}
class MyThread implements Runnable{
private String lockA;
private String lockB;
public MyThread(String lockA, String lockB) {
this.lockA = lockA;
this.lockB = lockB;
}
@Override
public void run() {
synchronized (lockA) {
System.out.println(Thread.currentThread().getName() + "A==>B");
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
synchronized (lockB) {
System.out.println(Thread.currentThread().getName() + "B==>A");
}
}
}
}
解决死锁的思路:
- 使用命令 jps -l 查看进程
2.使用命令 jstack 进程号 进行查看信息
标签:JUC,Thread,编程,System,并发,println,new,public,out From: https://www.cnblogs.com/mbkss/p/17693921.html