首页 > 编程语言 >jiangly算法模板收集

jiangly算法模板收集

时间:2023-09-01 18:58:48浏览次数:118  
标签:std vector return int rhs 算法 jiangly const 模板

目录

自用,尽可能找的最新的版本,部分提交来自于GYM、牛客多校。

数据结构

树状数组

2023-08-11

template <typename T>
struct Fenwick {
    int n;
    std::vector<T> a;
     
    Fenwick(int n = 0) {
        init(n);
    }
     
    void init(int n) {
        this->n = n;
        a.assign(n, T());
    }
     
    void add(int x, T v) {
        for (int i = x + 1; i <= n; i += i & -i) {
            a[i - 1] += v;
        }
    }
     
    T sum(int x) {
        auto ans = T();
        for (int i = x; i > 0; i -= i & -i) {
            ans += a[i - 1];
        }
        return ans;
    }
     
    T rangeSum(int l, int r) {
        return sum(r) - sum(l);
    }
     
    int kth(T k) {
        int x = 0;
        for (int i = 1 << std::__lg(n); i; i /= 2) {
            if (x + i <= n && k >= a[x + i - 1]) {
                x += i;
                k -= a[x - 1];
            }
        }
        return x;
    }
};

并查集

2023-08-04

struct DSU {
    std::vector<int> f, siz;
     
    DSU() {}
    DSU(int n) {
        init(n);
    }
     
    void init(int n) {
        f.resize(n);
        std::iota(f.begin(), f.end(), 0);
        siz.assign(n, 1);
    }
     
    int find(int x) {
        while (x != f[x]) {
            x = f[x] = f[f[x]];
        }
        return x;
    }
     
    bool same(int x, int y) {
        return find(x) == find(y);
    }
     
    bool merge(int x, int y) {
        x = find(x);
        y = find(y);
        if (x == y) {
            return false;
        }
        siz[x] += siz[y];
        f[y] = x;
        return true;
    }
     
    int size(int x) {
        return siz[find(x)];
    }
};

线段树

其一

2023-08-11

template<class Info>
struct SegmentTree {
    int n;
    std::vector<Info> info;
    SegmentTree() : n(0) {}
    SegmentTree(int n_, Info v_ = Info()) {
        init(n_, v_);
    }
    template<class T>
    SegmentTree(std::vector<T> init_) {
        init(init_);
    }
    void init(int n_, Info v_ = Info()) {
        init(std::vector(n_, v_));
    }
    template<class T>
    void init(std::vector<T> init_) {
        n = init_.size();
        info.assign(4 << std::__lg(n), Info());
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                info[p] = init_[l];
                return;
            }
            int m = (l + r) / 2;
            build(2 * p, l, m);
            build(2 * p + 1, m, r);
            pull(p);
        };
        build(1, 0, n);
    }
    void pull(int p) {
        info[p] = info[2 * p] + info[2 * p + 1];
    }
    void modify(int p, int l, int r, int x, const Info &v) {
        if (r - l == 1) {
            info[p] = v;
            return;
        }
        int m = (l + r) / 2;
        if (x < m) {
            modify(2 * p, l, m, x, v);
        } else {
            modify(2 * p + 1, m, r, x, v);
        }
        pull(p);
    }
    void modify(int p, const Info &v) {
        modify(1, 0, n, p, v);
    }
    Info rangeQuery(int p, int l, int r, int x, int y) {
        if (l >= y || r <= x) {
            return Info();
        }
        if (l >= x && r <= y) {
            return info[p];
        }
        int m = (l + r) / 2;
        return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
    }
    Info rangeQuery(int l, int r) {
        return rangeQuery(1, 0, n, l, r);
    }
    template<class F>
    int findFirst(int p, int l, int r, int x, int y, F pred) {
        if (l >= y || r <= x || !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        int res = findFirst(2 * p, l, m, x, y, pred);
        if (res == -1) {
            res = findFirst(2 * p + 1, m, r, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findFirst(int l, int r, F pred) {
        return findFirst(1, 0, n, l, r, pred);
    }
    template<class F>
    int findLast(int p, int l, int r, int x, int y, F pred) {
        if (l >= y || r <= x || !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        int res = findLast(2 * p + 1, m, r, x, y, pred);
        if (res == -1) {
            res = findLast(2 * p, l, m, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findLast(int l, int r, F pred) {
        return findLast(1, 0, n, l, r, pred);
    }
};
struct Info {
    int cnt = 0;
    i64 sum = 0;
    i64 ans = 0;
};
Info operator+(Info a, Info b) {
    Info c;
    c.cnt = a.cnt + b.cnt;
    c.sum = a.sum + b.sum;
    c.ans = a.ans + b.ans + a.cnt * b.sum - a.sum * b.cnt;
    return c;
}

其二

2023-08-29

template<class Info>
struct SegmentTree {
    int n;
    std::vector<Info> info;
    SegmentTree() : n(0) {}
    SegmentTree(int n_, Info v_ = Info()) {
        init(n_, v_);
    }
    template<class T>
    SegmentTree(std::vector<T> init_) {
        init(init_);
    }
    void init(int n_, Info v_ = Info()) {
        init(std::vector(n_, v_));
    }
    template<class T>
    void init(std::vector<T> init_) {
        n = init_.size();
        info.assign(4 << std::__lg(n), Info());
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                info[p] = init_[l];
                return;
            }
            int m = (l + r) / 2;
            build(2 * p, l, m);
            build(2 * p + 1, m, r);
            pull(p);
        };
        build(1, 0, n);
    }
    void pull(int p) {
        info[p] = info[2 * p] + info[2 * p + 1];
    }
    void modify(int p, int l, int r, int x, const Info &v) {
        if (r - l == 1) {
            info[p] = v;
            return;
        }
        int m = (l + r) / 2;
        if (x < m) {
            modify(2 * p, l, m, x, v);
        } else {
            modify(2 * p + 1, m, r, x, v);
        }
        pull(p);
    }
    void modify(int p, const Info &v) {
        modify(1, 0, n, p, v);
    }
    Info rangeQuery(int p, int l, int r, int x, int y) {
        if (l >= y || r <= x) {
            return Info();
        }
        if (l >= x && r <= y) {
            return info[p];
        }
        int m = (l + r) / 2;
        return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
    }
    Info rangeQuery(int l, int r) {
        return rangeQuery(1, 0, n, l, r);
    }
    template<class F>
    int findFirst(int p, int l, int r, int x, int y, F pred) {
        if (l >= y || r <= x || !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        int res = findFirst(2 * p, l, m, x, y, pred);
        if (res == -1) {
            res = findFirst(2 * p + 1, m, r, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findFirst(int l, int r, F pred) {
        return findFirst(1, 0, n, l, r, pred);
    }
    template<class F>
    int findLast(int p, int l, int r, int x, int y, F pred) {
        if (l >= y || r <= x || !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        int res = findLast(2 * p + 1, m, r, x, y, pred);
        if (res == -1) {
            res = findLast(2 * p, l, m, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findLast(int l, int r, F pred) {
        return findLast(1, 0, n, l, r, pred);
    }
};

struct Info {
    int x = 0;
    int cnt = 0;
};

Info operator+(Info a, Info b) {
    if (a.x == b.x) {
        return {a.x, a.cnt + b.cnt};
    } else if (a.cnt > b.cnt) {
        return {a.x, a.cnt - b.cnt};
    } else {
        return {b.x, b.cnt - a.cnt};
    }
}

其三

2022-04-23

template<class Info,
    class Merge = std::plus<Info>>
struct SegmentTree {
    const int n;
    const Merge merge;
    std::vector<Info> info;
    SegmentTree(int n) : n(n), merge(Merge()), info(4 << std::__lg(n)) {}
    SegmentTree(std::vector<Info> init) : SegmentTree(init.size()) {
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                info[p] = init[l];
                return;
            }
            int m = (l + r) / 2;
            build(2 * p, l, m);
            build(2 * p + 1, m, r);
            pull(p);
        };
        build(1, 0, n);
    }
    void pull(int p) {
        info[p] = merge(info[2 * p], info[2 * p + 1]);
    }
    void modify(int p, int l, int r, int x, const Info &v) {
        if (r - l == 1) {
            info[p] = v;
            return;
        }
        int m = (l + r) / 2;
        if (x < m) {
            modify(2 * p, l, m, x, v);
        } else {
            modify(2 * p + 1, m, r, x, v);
        }
        pull(p);
    }
    void modify(int p, const Info &v) {
        modify(1, 0, n, p, v);
    }
    Info rangeQuery(int p, int l, int r, int x, int y) {
        if (l >= y || r <= x) {
            return Info();
        }
        if (l >= x && r <= y) {
            return info[p];
        }
        int m = (l + r) / 2;
        return merge(rangeQuery(2 * p, l, m, x, y), rangeQuery(2 * p + 1, m, r, x, y));
    }
    Info rangeQuery(int l, int r) {
        return rangeQuery(1, 0, n, l, r);
    }
};
 
struct Info {
    int ans;
    std::vector<std::array<int, 2>> a;
    Info() : ans(0), a{} {}
    Info(int x) : ans(0), a{{x, 1}} {}
};
 
void add(Info &c, int x, int l) {
    if (c.a.empty()) {
        c.a.push_back({x, l});
        return;
    }
    auto &last = c.a.back();
    if (l == 0) {
        if (last[0] == x && last[1] == 0) {
            return;
        } else if (last[0] == !x && last[1] == 0) {
            if (c.a.size() > 1) {
                c.ans++;
                c.a.pop_back();
                add(c, x, l);
            } else {
                c.a.push_back({x, l});
            }
        } else if ((last[0] + last[1]) % 2 == x) {
            c.a.push_back({x, l});
        }
    } else {
        if (last[0] == x && last[1] == 0) {
            c.a.pop_back();
            add(c, x, l);
        } else if (last[0] == !x && last[1] == 0) {
            if (c.a.size() > 1) {
                c.ans++;
                c.a.pop_back();
                add(c, x, l);
            } else {
                c.a.push_back({x, l});
            }
        } else if ((last[0] + last[1]) % 2 == x) {
            last[1] += l;
        } else if (l == 1 && last[1] == 1) {
            c.a.pop_back();
            add(c, x, 0);
        } else if (l == 1) {
            last[1]--;
            add(c, x, 0);
        } else if (last[1] == 1) {
            c.a.pop_back();
            add(c, x, 0);
            add(c, !x, l - 1);
        } else {
            int t = std::min(last[1], l) - 1;
            c.ans += t;
            last[1] -= t;
            add(c, (x + t) % 2, l - t);
        }
    }
}
 
Info operator+(const Info &a, const Info &b) {
    if (a.a.empty()) {
        return b;
    }
    if (b.a.empty()) {
        return a;
    }
    Info c;
    c.ans = a.ans + b.ans;
    c.a = a.a;
    for (auto [x, l] : b.a) {
        add(c, x, l);
    }
    return c;
}

懒标记线段树

2023-07-17

template<class Info, class Tag>
struct LazySegmentTree {
    int n;
    std::vector<Info> info;
    std::vector<Tag> tag;
    LazySegmentTree() : n(0) {}
    LazySegmentTree(int n_, Info v_ = Info()) {
        init(n_, v_);
    }
    template<class T>
    LazySegmentTree(std::vector<T> init_) {
        init(init_);
    }
    void init(int n_, Info v_ = Info()) {
        init(std::vector(n_, v_));
    }
    template<class T>
    void init(std::vector<T> init_) {
        n = init_.size();
        info.assign(4 << std::__lg(n), Info());
        tag.assign(4 << std::__lg(n), Tag());
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                info[p] = init_[l];
                return;
            }
            int m = (l + r) / 2;
            build(2 * p, l, m);
            build(2 * p + 1, m, r);
            pull(p);
        };
        build(1, 0, n);
    }
    void pull(int p) {
        info[p] = info[2 * p] + info[2 * p + 1];
    }
    void apply(int p, const Tag &v) {
        info[p].apply(v);
        tag[p].apply(v);
    }
    void push(int p) {
        apply(2 * p, tag[p]);
        apply(2 * p + 1, tag[p]);
        tag[p] = Tag();
    }
    void modify(int p, int l, int r, int x, const Info &v) {
        if (r - l == 1) {
            info[p] = v;
            return;
        }
        int m = (l + r) / 2;
        push(p);
        if (x < m) {
            modify(2 * p, l, m, x, v);
        } else {
            modify(2 * p + 1, m, r, x, v);
        }
        pull(p);
    }
    void modify(int p, const Info &v) {
        modify(1, 0, n, p, v);
    }
    Info rangeQuery(int p, int l, int r, int x, int y) {
        if (l >= y || r <= x) {
            return Info();
        }
        if (l >= x && r <= y) {
            return info[p];
        }
        int m = (l + r) / 2;
        push(p);
        return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
    }
    Info rangeQuery(int l, int r) {
        return rangeQuery(1, 0, n, l, r);
    }
    void rangeApply(int p, int l, int r, int x, int y, const Tag &v) {
        if (l >= y || r <= x) {
            return;
        }
        if (l >= x && r <= y) {
            apply(p, v);
            return;
        }
        int m = (l + r) / 2;
        push(p);
        rangeApply(2 * p, l, m, x, y, v);
        rangeApply(2 * p + 1, m, r, x, y, v);
        pull(p);
    }
    void rangeApply(int l, int r, const Tag &v) {
        return rangeApply(1, 0, n, l, r, v);
    }
    template<class F>
    int findFirst(int p, int l, int r, int x, int y, F pred) {
        if (l >= y || r <= x || !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        push(p);
        int res = findFirst(2 * p, l, m, x, y, pred);
        if (res == -1) {
            res = findFirst(2 * p + 1, m, r, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findFirst(int l, int r, F pred) {
        return findFirst(1, 0, n, l, r, pred);
    }
    template<class F>
    int findLast(int p, int l, int r, int x, int y, F pred) {
        if (l >= y || r <= x || !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        push(p);
        int res = findLast(2 * p + 1, m, r, x, y, pred);
        if (res == -1) {
            res = findLast(2 * p, l, m, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findLast(int l, int r, F pred) {
        return findLast(1, 0, n, l, r, pred);
    }
};
 
struct Tag {
    i64 a = 0, b = 0;
    void apply(Tag t) {
        a = std::min(a, b + t.a);
        b += t.b;
    }
};
 
int k;
 
struct Info {
    i64 x = 0;
    void apply(Tag t) {
        x += t.a;
        if (x < 0) {
            x = (x % k + k) % k;
        }
        x += t.b - t.a;
    }
};
Info operator+(Info a, Info b) {
    return {a.x + b.x};
}

取模类(新版)

2023-08-14

template<class T>
constexpr T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}
 
constexpr i64 mul(i64 a, i64 b, i64 p) {
    i64 res = a * b - i64(1.L * a * b / p) * p;
    res %= p;
    if (res < 0) {
        res += p;
    }
    return res;
}
template<i64 P>
struct MLong {
    i64 x;
    constexpr MLong() : x{} {}
    constexpr MLong(i64 x) : x{norm(x % getMod())} {}
     
    static i64 Mod;
    constexpr static i64 getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(i64 Mod_) {
        Mod = Mod_;
    }
    constexpr i64 norm(i64 x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr i64 val() const {
        return x;
    }
    explicit constexpr operator i64() const {
        return x;
    }
    constexpr MLong operator-() const {
        MLong res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MLong inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MLong &operator*=(MLong rhs) & {
        x = mul(x, rhs.x, getMod());
        return *this;
    }
    constexpr MLong &operator+=(MLong rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MLong &operator-=(MLong rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MLong &operator/=(MLong rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MLong operator*(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MLong operator+(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MLong operator-(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MLong operator/(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
        i64 v;
        is >> v;
        a = MLong(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MLong lhs, MLong rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MLong lhs, MLong rhs) {
        return lhs.val() != rhs.val();
    }
};
 
template<>
i64 MLong<0LL>::Mod = i64(1E18) + 9;
 
template<int P>
struct MInt {
    int x;
    constexpr MInt() : x{} {}
    constexpr MInt(i64 x) : x{norm(x % getMod())} {}
     
    static int Mod;
    constexpr static int getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(int Mod_) {
        Mod = Mod_;
    }
    constexpr int norm(int x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr int val() const {
        return x;
    }
    explicit constexpr operator int() const {
        return x;
    }
    constexpr MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MInt inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MInt &operator*=(MInt rhs) & {
        x = 1LL * x * rhs.x % getMod();
        return *this;
    }
    constexpr MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
        i64 v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
};
 
template<>
int MInt<0>::Mod = 998244353;
 
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();
 
constexpr int P = 1000000007;
using Z = MInt<P>;

取模类(旧版)

2022-06-12

constexpr int P = 998244353;
using i64 = long long;
// assume -P <= x < 2P
int norm(int x) {
    if (x < 0) {
        x += P;
    }
    if (x >= P) {
        x -= P;
    }
    return x;
}
template<class T>
T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}
struct Z {
    int x;
    Z(int x = 0) : x(norm(x)) {}
    Z(i64 x) : x(norm(x % P)) {}
    int val() const {
        return x;
    }
    Z operator-() const {
        return Z(norm(P - x));
    }
    Z inv() const {
        assert(x != 0);
        return power(*this, P - 2);
    }
    Z &operator*=(const Z &rhs) {
        x = i64(x) * rhs.x % P;
        return *this;
    }
    Z &operator+=(const Z &rhs) {
        x = norm(x + rhs.x);
        return *this;
    }
    Z &operator-=(const Z &rhs) {
        x = norm(x - rhs.x);
        return *this;
    }
    Z &operator/=(const Z &rhs) {
        return *this *= rhs.inv();
    }
    friend Z operator*(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res *= rhs;
        return res;
    }
    friend Z operator+(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res += rhs;
        return res;
    }
    friend Z operator-(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res -= rhs;
        return res;
    }
    friend Z operator/(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res /= rhs;
        return res;
    }
    friend std::istream &operator>>(std::istream &is, Z &a) {
        i64 v;
        is >> v;
        a = Z(v);
        return is;
    }
    friend std::ostream &operator<<(std::ostream &os, const Z &a) {
        return os << a.val();
    }
};

树链剖分

2023-08-31

struct HLD {
    int n;
    std::vector<int> siz, top, dep, parent, in, out, seq;
    std::vector<std::vector<int>> adj;
    int cur;
    
    HLD() {}
    HLD(int n) {
        init(n);
    }
    void init(int n) {
        this->n = n;
        siz.resize(n);
        top.resize(n);
        dep.resize(n);
        parent.resize(n);
        in.resize(n);
        out.resize(n);
        seq.resize(n);
        cur = 0;
        adj.assign(n, {});
    }
    void addEdge(int u, int v) {
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    void work(int root = 0) {
        top[root] = root;
        dep[root] = 0;
        parent[root] = -1;
        dfs1(root);
        dfs2(root);
    }
    void dfs1(int u) {
        if (parent[u] != -1) {
            adj[u].erase(std::find(adj[u].begin(), adj[u].end(), parent[u]));
        }
        
        siz[u] = 1;
        for (auto &v : adj[u]) {
            parent[v] = u;
            dep[v] = dep[u] + 1;
            dfs1(v);
            siz[u] += siz[v];
            if (siz[v] > siz[adj[u][0]]) {
                std::swap(v, adj[u][0]);
            }
        }
    }
    void dfs2(int u) {
        in[u] = cur++;
        seq[in[u]] = u;
        for (auto v : adj[u]) {
            top[v] = v == adj[u][0] ? top[u] : v;
            dfs2(v);
        }
        out[u] = cur;
    }
    int lca(int u, int v) {
        while (top[u] != top[v]) {
            if (dep[top[u]] > dep[top[v]]) {
                u = parent[top[u]];
            } else {
                v = parent[top[v]];
            }
        }
        return dep[u] < dep[v] ? u : v;
    }
    
    int dist(int u, int v) {
        return dep[u] + dep[v] - 2 * dep[lca(u, v)];
    }
    
    int jump(int u, int k) {
        if (dep[u] < k) {
            return -1;
        }
        
        int d = dep[u] - k;
        
        while (dep[top[u]] > d) {
            u = parent[top[u]];
        }
        
        return seq[in[u] - dep[u] + d];
    }
    
    bool isAncester(int u, int v) {
        return in[u] <= in[v] && in[v] < out[u];
    }
    
    int rootedParent(int u, int v) {
        std::swap(u, v);
        if (u == v) {
            return u;
        }
        if (!isAncester(u, v)) {
            return parent[u];
        }
        auto it = std::upper_bound(adj[u].begin(), adj[u].end(), v, [&](int x, int y) {
            return in[x] < in[y];
        }) - 1;
        return *it;
    }
    
    int rootedSize(int u, int v) {
        if (u == v) {
            return n;
        }
        if (!isAncester(v, u)) {
            return siz[v];
        }
        return n - siz[rootedParent(u, v)];
    }
    
    int rootedLca(int a, int b, int c) {
        return lca(a, b) ^ lca(b, c) ^ lca(c, a);
    }
};

Splay

2023-07-31

struct Node {
    Node *l = nullptr;
    Node *r = nullptr;
    int cnt = 0;
    int cntnew = 0;
};
 
Node *add(int l, int r, int x, int isnew) {
    Node *t = new Node;
    t->cnt = 1;
    t->cntnew = isnew;
    if (r - l == 1) {
        return t;
    }
    int m = (l + r) / 2;
    if (x < m) {
        t->l = add(l, m, x, isnew);
    } else {
        t->r = add(m, r, x, isnew);
    }
    return t;
}
 
struct Info {
    Node *t = nullptr;
    int psum = 0;
    bool rev = false;
};
 
void pull(Node *t) {
    t->cnt = (t->l ? t->l->cnt : 0) + (t->r ? t->r->cnt : 0);
    t->cntnew = (t->l ? t->l->cntnew : 0) + (t->r ? t->r->cntnew : 0);
}
 
std::pair<Node *, Node *> split(Node *t, int l, int r, int x, bool rev) {
    if (!t) {
        return {t, t};
    }
    if (x == 0) {
        return {nullptr, t};
    }
    if (x == t->cnt) {
        return {t, nullptr};
    }
    if (r - l == 1) {
        Node *t2 = new Node;
        t2->cnt = t->cnt - x;
        t->cnt = x;
        return {t, t2};
    }
    Node *t2 = new Node;
    int m = (l + r) / 2;
    if (!rev) {
        if (t->l && x <= t->l->cnt) {
            std::tie(t->l, t2->l) = split(t->l, l, m, x, rev);
            t2->r = t->r;
            t->r = nullptr;
        } else {
            std::tie(t->r, t2->r) = split(t->r, m, r, x - (t->l ? t->l->cnt : 0), rev);
        }
    } else {
        if (t->r && x <= t->r->cnt) {
            std::tie(t->r, t2->r) = split(t->r, m, r, x, rev);
            t2->l = t->l;
            t->l = nullptr;
        } else {
            std::tie(t->l, t2->l) = split(t->l, l, m, x - (t->r ? t->r->cnt : 0), rev);
        }
    }
    pull(t);
    pull(t2);
    return {t, t2};
}
 
Node *merge(Node *t1, Node *t2, int l, int r) {
    if (!t1) {
        return t2;
    }
    if (!t2) {
        return t1;
    }
    if (r - l == 1) {
        t1->cnt += t2->cnt;
        t1->cntnew += t2->cntnew;
        delete t2;
        return t1;
    }
    int m = (l + r) / 2;
    t1->l = merge(t1->l, t2->l, l, m);
    t1->r = merge(t1->r, t2->r, m, r);
    delete t2;
    pull(t1);
    return t1;
}

其他二叉树

其一

2023-08-04

struct Node {
    Node *l = nullptr;
    Node *r = nullptr;
    int sum = 0;
    int sumodd = 0;
     
    Node(Node *t) {
        if (t) {
            *this = *t;
        }
    }
};
 
Node *add(Node *t, int l, int r, int x, int v) {
    t = new Node(t);
    t->sum += v;
    t->sumodd += (x % 2) * v;
    if (r - l == 1) {
        return t;
    }
    int m = (l + r) / 2;
    if (x < m) {
        t->l = add(t->l, l, m, x, v);
    } else {
        t->r = add(t->r, m, r, x, v);
    }
    return t;
}
 
int query1(Node *t1, Node *t2, int l, int r, int k) {
    if (r - l == 1) {
        return l;
    }
    int m = (l + r) / 2;
    int odd = (t1 && t1->r ? t1->r->sumodd : 0) - (t2 && t2->r ? t2->r->sumodd : 0);
    int cnt = (t1 && t1->r ? t1->r->sum : 0) - (t2 && t2->r ? t2->r->sum : 0);
    if (odd > 0 || cnt > k) {
        return query1(t1 ? t1->r : t1, t2 ? t2->r : t2, m, r, k);
    } else {
        return query1(t1 ? t1->l : t1, t2 ? t2->l : t2, l, m, k - cnt);
    }
}
 
std::array<int, 3> query2(Node *t1, Node *t2, int l, int r, int k) {
    if (r - l == 1) {
        int cnt = (t1 ? t1->sumodd : 0) - (t2 ? t2->sumodd : 0);
        return {l, cnt, k};
    }
    int m = (l + r) / 2;
    int cnt = (t1 && t1->r ? t1->r->sumodd : 0) - (t2 && t2->r ? t2->r->sumodd : 0);
    if (cnt > k) {
        return query2(t1 ? t1->r : t1, t2 ? t2->r : t2, m, r, k);
    } else {
        return query2(t1 ? t1->l : t1, t2 ? t2->l : t2, l, m, k - cnt);
    }
}

其二

2023-08-26

struct Node {
    Node *l = nullptr;
    Node *r = nullptr;
    int cnt = 0;
};
 
Node *add(Node *t, int l, int r, int x) {
    if (t) {
        t = new Node(*t);
    } else {
        t = new Node;
    }
    t->cnt += 1;
    if (r - l == 1) {
        return t;
    }
    int m = (l + r) / 2;
    if (x < m) {
        t->l = add(t->l, l, m, x);
    } else {
        t->r = add(t->r, m, r, x);
    }
    return t;
}
 
int query(Node *t1, Node *t2, int l, int r, int x) {
    int cnt = (t2 ? t2->cnt : 0) - (t1 ? t1->cnt : 0);
    if (cnt == 0 || l >= x) {
        return -1;
    }
    if (r - l == 1) {
        return l;
    }
    int m = (l + r) / 2;
    int res = query(t1 ? t1->r : t1, t2 ? t2->r : t2, m, r, x);
    if (res == -1) {
        res = query(t1 ? t1->l : t1, t2 ? t2->l : t2, l, m, x);
    }
    return res;
}

分数四则运算

2023-04-23

template<class T>
struct Frac {
    T num;
    T den;
    Frac(T num_, T den_) : num(num_), den(den_) {
        if (den < 0) {
            den = -den;
            num = -num;
        }
    }
    Frac() : Frac(0, 1) {}
    Frac(T num_) : Frac(num_, 1) {}
    explicit operator double() const {
        return 1. * num / den;
    }
    Frac &operator+=(const Frac &rhs) {
        num = num * rhs.den + rhs.num * den;
        den *= rhs.den;
        return *this;
    }
    Frac &operator-=(const Frac &rhs) {
        num = num * rhs.den - rhs.num * den;
        den *= rhs.den;
        return *this;
    }
    Frac &operator*=(const Frac &rhs) {
        num *= rhs.num;
        den *= rhs.den;
        return *this;
    }
    Frac &operator/=(const Frac &rhs) {
        num *= rhs.den;
        den *= rhs.num;
        if (den < 0) {
            num = -num;
            den = -den;
        }
        return *this;
    }
    friend Frac operator+(Frac lhs, const Frac &rhs) {
        return lhs += rhs;
    }
    friend Frac operator-(Frac lhs, const Frac &rhs) {
        return lhs -= rhs;
    }
    friend Frac operator*(Frac lhs, const Frac &rhs) {
        return lhs *= rhs;
    }
    friend Frac operator/(Frac lhs, const Frac &rhs) {
        return lhs /= rhs;
    }
    friend Frac operator-(const Frac &a) {
        return Frac(-a.num, a.den);
    }
    friend bool operator==(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den == rhs.num * lhs.den;
    }
    friend bool operator!=(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den != rhs.num * lhs.den;
    }
    friend bool operator<(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den < rhs.num * lhs.den;
    }
    friend bool operator>(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den > rhs.num * lhs.den;
    }
    friend bool operator<=(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den <= rhs.num * lhs.den;
    }
    friend bool operator>=(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den >= rhs.num * lhs.den;
    }
    friend std::ostream &operator<<(std::ostream &os, Frac x) {
        T g = std::gcd(x.num, x.den);
        if (x.den == g) {
            return os << x.num / g;
        } else {
            return os << x.num / g << "/" << x.den / g;
        }
    }
};

数论

欧拉筛

2023-08-29

std::vector<int> minp, primes;

void sieve(int n) {
    minp.assign(n + 1, 0);
    primes.clear();
    
    for (int i = 2; i <= n; i++) {
        if (minp[i] == 0) {
            minp[i] = i;
            primes.push_back(i);
        }
        
        for (auto p : primes) {
            if (i * p > n) {
                break;
            }
            minp[i * p] = p;
            if (p == minp[i]) {
                break;
            }
        }
    }
}

组合数

2023-08-26

struct Comb {
    int n;
    std::vector<Z> _fac;
    std::vector<Z> _invfac;
    std::vector<Z> _inv;
    
    Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
    Comb(int n) : Comb() {
        init(n);
    }
    
    void init(int m) {
        m = std::min(m, Z::getMod() - 1);
        if (m <= n) return;
        _fac.resize(m + 1);
        _invfac.resize(m + 1);
        _inv.resize(m + 1);
        
        for (int i = n + 1; i <= m; i++) {
            _fac[i] = _fac[i - 1] * i;
        }
        _invfac[m] = _fac[m].inv();
        for (int i = m; i > n; i--) {
            _invfac[i - 1] = _invfac[i] * i;
            _inv[i] = _invfac[i] * _fac[i - 1];
        }
        n = m;
    }
    
    Z fac(int m) {
        if (m > n) init(2 * m);
        return _fac[m];
    }
    Z invfac(int m) {
        if (m > n) init(2 * m);
        return _invfac[m];
    }
    Z inv(int m) {
        if (m > n) init(2 * m);
        return _inv[m];
    }
    Z binom(int n, int m) {
        if (n < m || m < 0) return 0;
        return fac(n) * invfac(m) * invfac(n - m);
    }
} comb;

多项式相关

2023-08-04

std::vector<int> rev;
template<int P>
std::vector<MInt<P>> roots{0, 1};
 
template<int P>
constexpr MInt<P> findPrimitiveRoot() {
    MInt<P> i = 2;
    int k = __builtin_ctz(P - 1);
    while (true) {
        if (power(i, (P - 1) / 2) != 1) {
            break;
        }
        i += 1;
    }
    return power(i, (P - 1) >> k);
}
 
template<int P>
constexpr MInt<P> primitiveRoot = findPrimitiveRoot<P>();
 
template<>
constexpr MInt<998244353> primitiveRoot<998244353> {31};
 
template<int P>
constexpr void dft(std::vector<MInt<P>> &a) {
    int n = a.size();
     
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
     
    for (int i = 0; i < n; i++) {
        if (rev[i] < i) {
            std::swap(a[i], a[rev[i]]);
        }
    }
    if (roots<P>.size() < n) {
        int k = __builtin_ctz(roots<P>.size());
        roots<P>.resize(n);
        while ((1 << k) < n) {
            auto e = power(primitiveRoot<P>, 1 << (__builtin_ctz(P - 1) - k - 1));
            for (int i = 1 << (k - 1); i < (1 << k); i++) {
                roots<P>[2 * i] = roots<P>[i];
                roots<P>[2 * i + 1] = roots<P>[i] * e;
            }
            k++;
        }
    }
    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j++) {
                MInt<P> u = a[i + j];
                MInt<P> v = a[i + j + k] * roots<P>[k + j];
                a[i + j] = u + v;
                a[i + j + k] = u - v;
            }
        }
    }
}
 
template<int P>
constexpr void idft(std::vector<MInt<P>> &a) {
    int n = a.size();
    std::reverse(a.begin() + 1, a.end());
    dft(a);
    MInt<P> inv = (1 - P) / n;
    for (int i = 0; i < n; i++) {
        a[i] *= inv;
    }
}
 
template<int P = 998244353>
struct Poly : public std::vector<MInt<P>> {
    using Value = MInt<P>;
     
    Poly() : std::vector<Value>() {}
    explicit constexpr Poly(int n) : std::vector<Value>(n) {}
     
    explicit constexpr Poly(const std::vector<Value> &a) : std::vector<Value>(a) {}
    constexpr Poly(const std::initializer_list<Value> &a) : std::vector<Value>(a) {}
     
    template<class InputIt, class = std::_RequireInputIter<InputIt>>
    explicit constexpr Poly(InputIt first, InputIt last) : std::vector<Value>(first, last) {}
     
    template<class F>
    explicit constexpr Poly(int n, F f) : std::vector<Value>(n) {
        for (int i = 0; i < n; i++) {
            (*this)[i] = f(i);
        }
    }
     
    constexpr Poly shift(int k) const {
        if (k >= 0) {
            auto b = *this;
            b.insert(b.begin(), k, 0);
            return b;
        } else if (this->size() <= -k) {
            return Poly();
        } else {
            return Poly(this->begin() + (-k), this->end());
        }
    }
    constexpr Poly trunc(int k) const {
        Poly f = *this;
        f.resize(k);
        return f;
    }
    constexpr friend Poly operator+(const Poly &a, const Poly &b) {
        Poly res(std::max(a.size(), b.size()));
        for (int i = 0; i < a.size(); i++) {
            res[i] += a[i];
        }
        for (int i = 0; i < b.size(); i++) {
            res[i] += b[i];
        }
        return res;
    }
    constexpr friend Poly operator-(const Poly &a, const Poly &b) {
        Poly res(std::max(a.size(), b.size()));
        for (int i = 0; i < a.size(); i++) {
            res[i] += a[i];
        }
        for (int i = 0; i < b.size(); i++) {
            res[i] -= b[i];
        }
        return res;
    }
    constexpr friend Poly operator-(const Poly &a) {
        std::vector<Value> res(a.size());
        for (int i = 0; i < int(res.size()); i++) {
            res[i] = -a[i];
        }
        return Poly(res);
    }
    constexpr friend Poly operator*(Poly a, Poly b) {
        if (a.size() == 0 || b.size() == 0) {
            return Poly();
        }
        if (a.size() < b.size()) {
            std::swap(a, b);
        }
        int n = 1, tot = a.size() + b.size() - 1;
        while (n < tot) {
            n *= 2;
        }
        if (((P - 1) & (n - 1)) != 0 || b.size() < 128) {
            Poly c(a.size() + b.size() - 1);
            for (int i = 0; i < a.size(); i++) {
                for (int j = 0; j < b.size(); j++) {
                    c[i + j] += a[i] * b[j];
                }
            }
            return c;
        }
        a.resize(n);
        b.resize(n);
        dft(a);
        dft(b);
        for (int i = 0; i < n; ++i) {
            a[i] *= b[i];
        }
        idft(a);
        a.resize(tot);
        return a;
    }
    constexpr friend Poly operator*(Value a, Poly b) {
        for (int i = 0; i < int(b.size()); i++) {
            b[i] *= a;
        }
        return b;
    }
    constexpr friend Poly operator*(Poly a, Value b) {
        for (int i = 0; i < int(a.size()); i++) {
            a[i] *= b;
        }
        return a;
    }
    constexpr friend Poly operator/(Poly a, Value b) {
        for (int i = 0; i < int(a.size()); i++) {
            a[i] /= b;
        }
        return a;
    }
    constexpr Poly &operator+=(Poly b) {
        return (*this) = (*this) + b;
    }
    constexpr Poly &operator-=(Poly b) {
        return (*this) = (*this) - b;
    }
    constexpr Poly &operator*=(Poly b) {
        return (*this) = (*this) * b;
    }
    constexpr Poly &operator*=(Value b) {
        return (*this) = (*this) * b;
    }
    constexpr Poly &operator/=(Value b) {
        return (*this) = (*this) / b;
    }
    constexpr Poly deriv() const {
        if (this->empty()) {
            return Poly();
        }
        Poly res(this->size() - 1);
        for (int i = 0; i < this->size() - 1; ++i) {
            res[i] = (i + 1) * (*this)[i + 1];
        }
        return res;
    }
    constexpr Poly integr() const {
        Poly res(this->size() + 1);
        for (int i = 0; i < this->size(); ++i) {
            res[i + 1] = (*this)[i] / (i + 1);
        }
        return res;
    }
    constexpr Poly inv(int m) const {
        Poly x{(*this)[0].inv()};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{2} - trunc(k) * x)).trunc(k);
        }
        return x.trunc(m);
    }
    constexpr Poly log(int m) const {
        return (deriv() * inv(m)).integr().trunc(m);
    }
    constexpr Poly exp(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{1} - x.log(k) + trunc(k))).trunc(k);
        }
        return x.trunc(m);
    }
    constexpr Poly pow(int k, int m) const {
        int i = 0;
        while (i < this->size() && (*this)[i] == 0) {
            i++;
        }
        if (i == this->size() || 1LL * i * k >= m) {
            return Poly(m);
        }
        Value v = (*this)[i];
        auto f = shift(-i) * v.inv();
        return (f.log(m - i * k) * k).exp(m - i * k).shift(i * k) * power(v, k);
    }
    constexpr Poly sqrt(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x + (trunc(k) * x.inv(k)).trunc(k)) * CInv<2, P>;
        }
        return x.trunc(m);
    }
    constexpr Poly mulT(Poly b) const {
        if (b.size() == 0) {
            return Poly();
        }
        int n = b.size();
        std::reverse(b.begin(), b.end());
        return ((*this) * b).shift(-(n - 1));
    }
    constexpr std::vector<Value> eval(std::vector<Value> x) const {
        if (this->size() == 0) {
            return std::vector<Value>(x.size(), 0);
        }
        const int n = std::max(x.size(), this->size());
        std::vector<Poly> q(4 * n);
        std::vector<Value> ans(x.size());
        x.resize(n);
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                q[p] = Poly{1, -x[l]};
            } else {
                int m = (l + r) / 2;
                build(2 * p, l, m);
                build(2 * p + 1, m, r);
                q[p] = q[2 * p] * q[2 * p + 1];
            }
        };
        build(1, 0, n);
        std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
            if (r - l == 1) {
                if (l < int(ans.size())) {
                    ans[l] = num[0];
                }
            } else {
                int m = (l + r) / 2;
                work(2 * p, l, m, num.mulT(q[2 * p + 1]).resize(m - l));
                work(2 * p + 1, m, r, num.mulT(q[2 * p]).resize(r - m));
            }
        };
        work(1, 0, n, mulT(q[1].inv(n)));
        return ans;
    }
};
 
template<int P = 998244353>
Poly<P> berlekampMassey(const Poly<P> &s) {
    Poly<P> c;
    Poly<P> oldC;
    int f = -1;
    for (int i = 0; i < s.size(); i++) {
        auto delta = s[i];
        for (int j = 1; j <= c.size(); j++) {
            delta -= c[j - 1] * s[i - j];
        }
        if (delta == 0) {
            continue;
        }
        if (f == -1) {
            c.resize(i + 1);
            f = i;
        } else {
            auto d = oldC;
            d *= -1;
            d.insert(d.begin(), 1);
            MInt<P> df1 = 0;
            for (int j = 1; j <= d.size(); j++) {
                df1 += d[j - 1] * s[f + 1 - j];
            }
            assert(df1 != 0);
            auto coef = delta / df1;
            d *= coef;
            Poly<P> zeros(i - f - 1);
            zeros.insert(zeros.end(), d.begin(), d.end());
            d = zeros;
            auto temp = c;
            c += d;
            if (i - temp.size() > f - oldC.size()) {
                oldC = temp;
                f = i;
            }
        }
    }
    c *= -1;
    c.insert(c.begin(), 1);
    return c;
}
 
 
template<int P = 998244353>
MInt<P> linearRecurrence(Poly<P> p, Poly<P> q, i64 n) {
    int m = q.size() - 1;
    while (n > 0) {
        auto newq = q;
        for (int i = 1; i <= m; i += 2) {
            newq[i] *= -1;
        }
        auto newp = p * newq;
        newq = q * newq;
        for (int i = 0; i < m; i++) {
            p[i] = newp[i * 2 + n % 2];
        }
        for (int i = 0; i <= m; i++) {
            q[i] = newq[i * 2];
        }
        n /= 2;
    }
    return p[0] / q[0];
}

几何

2023-07-17

template<class T>
struct Point {
    T x;
    T y;
    Point(T x_ = 0, T y_ = 0) : x(x_), y(y_) {}
     
    template<class U>
    operator Point<U>() {
        return Point<U>(U(x), U(y));
    }
    Point &operator+=(Point p) & {
        x += p.x;
        y += p.y;
        return *this;
    }
    Point &operator-=(Point p) & {
        x -= p.x;
        y -= p.y;
        return *this;
    }
    Point &operator*=(T v) & {
        x *= v;
        y *= v;
        return *this;
    }
    Point operator-() const {
        return Point(-x, -y);
    }
    friend Point operator+(Point a, Point b) {
        return a += b;
    }
    friend Point operator-(Point a, Point b) {
        return a -= b;
    }
    friend Point operator*(Point a, T b) {
        return a *= b;
    }
    friend Point operator*(T a, Point b) {
        return b *= a;
    }
    friend bool operator==(Point a, Point b) {
        return a.x == b.x && a.y == b.y;
    }
    friend std::istream &operator>>(std::istream &is, Point &p) {
        return is >> p.x >> p.y;
    }
    friend std::ostream &operator<<(std::ostream &os, Point p) {
        return os << "(" << p.x << ", " << p.y << ")";
    }
};
 
template<class T>
T dot(Point<T> a, Point<T> b) {
    return a.x * b.x + a.y * b.y;
}
 
template<class T>
T cross(Point<T> a, Point<T> b) {
    return a.x * b.y - a.y * b.x;
}
 
template<class T>
T square(Point<T> p) {
    return dot(p, p);
}
 
template<class T>
double length(Point<T> p) {
    return std::sqrt(double(square(p)));
}
 
long double length(Point<long double> p) {
    return std::sqrt(square(p));
}
 
template<class T>
struct Line {
    Point<T> a;
    Point<T> b;
    Line(Point<T> a_ = Point<T>(), Point<T> b_ = Point<T>()) : a(a_), b(b_) {}
};
 
template<class T>
Point<T> rotate(Point<T> a) {
    return Point(-a.y, a.x);
}
 
template<class T>
int sgn(Point<T> a) {
    return a.y > 0 || (a.y == 0 && a.x > 0) ? 1 : -1;
}
 
template<class T>
bool pointOnLineLeft(Point<T> p, Line<T> l) {
    return cross(l.b - l.a, p - l.a) > 0;
}
 
template<class T>
Point<T> lineIntersection(Line<T> l1, Line<T> l2) {
    return l1.a + (l1.b - l1.a) * (cross(l2.b - l2.a, l1.a - l2.a) / cross(l2.b - l2.a, l1.a - l1.b));
}
 
template<class T>
bool pointOnSegment(Point<T> p, Line<T> l) {
    return cross(p - l.a, l.b - l.a) == 0 && std::min(l.a.x, l.b.x) <= p.x && p.x <= std::max(l.a.x, l.b.x)
        && std::min(l.a.y, l.b.y) <= p.y && p.y <= std::max(l.a.y, l.b.y);
}
 
template<class T>
bool pointInPolygon(Point<T> a, std::vector<Point<T>> p) {
    int n = p.size();
    for (int i = 0; i < n; i++) {
        if (pointOnSegment(a, Line(p[i], p[(i + 1) % n]))) {
            return true;
        }
    }
     
    int t = 0;
    for (int i = 0; i < n; i++) {
        auto u = p[i];
        auto v = p[(i + 1) % n];
        if (u.x < a.x && v.x >= a.x && pointOnLineLeft(a, Line(v, u))) {
            t ^= 1;
        }
        if (u.x >= a.x && v.x < a.x && pointOnLineLeft(a, Line(u, v))) {
            t ^= 1;
        }
    }
     
    return t == 1;
}
 
// 0 : not intersect
// 1 : strictly intersect
// 2 : overlap
// 3 : intersect at endpoint
template<class T>
std::tuple<int, Point<T>, Point<T>> segmentIntersection(Line<T> l1, Line<T> l2) {
    if (std::max(l1.a.x, l1.b.x) < std::min(l2.a.x, l2.b.x)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::min(l1.a.x, l1.b.x) > std::max(l2.a.x, l2.b.x)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::max(l1.a.y, l1.b.y) < std::min(l2.a.y, l2.b.y)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::min(l1.a.y, l1.b.y) > std::max(l2.a.y, l2.b.y)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (cross(l1.b - l1.a, l2.b - l2.a) == 0) {
        if (cross(l1.b - l1.a, l2.a - l1.a) != 0) {
            return {0, Point<T>(), Point<T>()};
        } else {
            auto maxx1 = std::max(l1.a.x, l1.b.x);
            auto minx1 = std::min(l1.a.x, l1.b.x);
            auto maxy1 = std::max(l1.a.y, l1.b.y);
            auto miny1 = std::min(l1.a.y, l1.b.y);
            auto maxx2 = std::max(l2.a.x, l2.b.x);
            auto minx2 = std::min(l2.a.x, l2.b.x);
            auto maxy2 = std::max(l2.a.y, l2.b.y);
            auto miny2 = std::min(l2.a.y, l2.b.y);
            Point<T> p1(std::max(minx1, minx2), std::max(miny1, miny2));
            Point<T> p2(std::min(maxx1, maxx2), std::min(maxy1, maxy2));
            if (!pointOnSegment(p1, l1)) {
                std::swap(p1.y, p2.y);
            }
            if (p1 == p2) {
                return {3, p1, p2};
            } else {
                return {2, p1, p2};
            }
        }
    }
    auto cp1 = cross(l2.a - l1.a, l2.b - l1.a);
    auto cp2 = cross(l2.a - l1.b, l2.b - l1.b);
    auto cp3 = cross(l1.a - l2.a, l1.b - l2.a);
    auto cp4 = cross(l1.a - l2.b, l1.b - l2.b);
     
    if ((cp1 > 0 && cp2 > 0) || (cp1 < 0 && cp2 < 0) || (cp3 > 0 && cp4 > 0) || (cp3 < 0 && cp4 < 0)) {
        return {0, Point<T>(), Point<T>()};
    }
     
    Point p = lineIntersection(l1, l2);
    if (cp1 != 0 && cp2 != 0 && cp3 != 0 && cp4 != 0) {
        return {1, p, p};
    } else {
        return {3, p, p};
    }
}
 
template<class T>
bool segmentInPolygon(Line<T> l, std::vector<Point<T>> p) {
    int n = p.size();
    if (!pointInPolygon(l.a, p)) {
        return false;
    }
    if (!pointInPolygon(l.b, p)) {
        return false;
    }
    for (int i = 0; i < n; i++) {
        auto u = p[i];
        auto v = p[(i + 1) % n];
        auto w = p[(i + 2) % n];
        auto [t, p1, p2] = segmentIntersection(l, Line(u, v));
         
        if (t == 1) {
            return false;
        }
        if (t == 0) {
            continue;
        }
        if (t == 2) {
            if (pointOnSegment(v, l) && v != l.a && v != l.b) {
                if (cross(v - u, w - v) > 0) {
                    return false;
                }
            }
        } else {
            if (p1 != u && p1 != v) {
                if (pointOnLineLeft(l.a, Line(v, u))
                    || pointOnLineLeft(l.b, Line(v, u))) {
                    return false;
                }
            } else if (p1 == v) {
                if (l.a == v) {
                    if (pointOnLineLeft(u, l)) {
                        if (pointOnLineLeft(w, l)
                            && pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, l)
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                } else if (l.b == v) {
                    if (pointOnLineLeft(u, Line(l.b, l.a))) {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            && pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                } else {
                    if (pointOnLineLeft(u, l)) {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, l)
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                }
            }
        }
    }
    return true;
}
 
template<class T>
std::vector<Point<T>> hp(std::vector<Line<T>> lines) {
    std::sort(lines.begin(), lines.end(), [&](auto l1, auto l2) {
        auto d1 = l1.b - l1.a;
        auto d2 = l2.b - l2.a;
         
        if (sgn(d1) != sgn(d2)) {
            return sgn(d1) == 1;
        }
         
        return cross(d1, d2) > 0;
    });
     
    std::deque<Line<T>> ls;
    std::deque<Point<T>> ps;
    for (auto l : lines) {
        if (ls.empty()) {
            ls.push_back(l);
            continue;
        }
         
        while (!ps.empty() && !pointOnLineLeft(ps.back(), l)) {
            ps.pop_back();
            ls.pop_back();
        }
         
        while (!ps.empty() && !pointOnLineLeft(ps[0], l)) {
            ps.pop_front();
            ls.pop_front();
        }
         
        if (cross(l.b - l.a, ls.back().b - ls.back().a) == 0) {
            if (dot(l.b - l.a, ls.back().b - ls.back().a) > 0) {
                 
                if (!pointOnLineLeft(ls.back().a, l)) {
                    assert(ls.size() == 1);
                    ls[0] = l;
                }
                continue;
            }
            return {};
        }
         
        ps.push_back(lineIntersection(ls.back(), l));
        ls.push_back(l);
    }
     
    while (!ps.empty() && !pointOnLineLeft(ps.back(), ls[0])) {
        ps.pop_back();
        ls.pop_back();
    }
    if (ls.size() <= 2) {
        return {};
    }
    ps.push_back(lineIntersection(ls[0], ls.back()));
     
    return std::vector(ps.begin(), ps.end());
}

有的时候会简写:

using V = long double;
using P = Point<V>;
using L = Line<V>;

图论

(有向图)强连通分量缩点

2023-06-18

struct SCC {
    int n;
    std::vector<std::vector<int>> adj;
    std::vector<int> stk;
    std::vector<int> dfn, low, bel;
    int cur, cnt;
    
    SCC() {}
    SCC(int n) {
        init(n);
    }
    
    void init(int n) {
        this->n = n;
        adj.assign(n, {});
        dfn.assign(n, -1);
        low.resize(n);
        bel.assign(n, -1);
        stk.clear();
        cur = cnt = 0;
    }
    
    void addEdge(int u, int v) {
        adj[u].push_back(v);
    }
    
    void dfs(int x) {
        dfn[x] = low[x] = cur++;
        stk.push_back(x);
        
        for (auto y : adj[x]) {
            if (dfn[y] == -1) {
                dfs(y);
                low[x] = std::min(low[x], low[y]);
            } else if (bel[y] == -1) {
                low[x] = std::min(low[x], dfn[y]);
            }
        }
        
        if (dfn[x] == low[x]) {
            int y;
            do {
                y = stk.back();
                bel[y] = cnt;
                stk.pop_back();
            } while (y != x);
            cnt++;
        }
    }
    
    std::vector<int> work() {
        for (int i = 0; i < n; i++) {
            if (dfn[i] == -1) {
                dfs(i);
            }
        }
        return bel;
    }
};

(无向图)求解割边、割边缩点

2023-05-11

struct EBCC {
    int n;
    std::vector<std::vector<int>> adj;
    std::vector<int> stk;
    std::vector<int> dfn, low, bel;
    int cur, cnt;
    
    EBCC() {}
    EBCC(int n) {
        init(n);
    }
    
    void init(int n) {
        this->n = n;
        adj.assign(n, {});
        dfn.assign(n, -1);
        low.resize(n);
        bel.assign(n, -1);
        stk.clear();
        cur = cnt = 0;
    }
    
    void addEdge(int u, int v) {
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    
    void dfs(int x, int p) {
        dfn[x] = low[x] = cur++;
        stk.push_back(x);
        
        for (auto y : adj[x]) {
            if (y == p) {
                continue;
            }
            if (dfn[y] == -1) {
                E.emplace(x, y);
                dfs(y, x);
                low[x] = std::min(low[x], low[y]);
            } else if (bel[y] == -1 && dfn[y] < dfn[x]) {
                E.emplace(x, y);
                low[x] = std::min(low[x], dfn[y]);
            }
        }
        
        if (dfn[x] == low[x]) {
            int y;
            do {
                y = stk.back();
                bel[y] = cnt;
                stk.pop_back();
            } while (y != x);
            cnt++;
        }
    }
    
    std::vector<int> work() {
        dfs(0, -1);
        return bel;
    }
    
    struct Graph {
        int n;
        std::vector<std::pair<int, int>> edges;
        std::vector<int> siz;
        std::vector<int> cnte;
    };
    Graph compress() {
        Graph g;
        g.n = cnt;
        g.siz.resize(cnt);
        g.cnte.resize(cnt);
        for (int i = 0; i < n; i++) {
            g.siz[bel[i]]++;
            for (auto j : adj[i]) {
                if (bel[i] < bel[j]) {
                    g.edges.emplace_back(bel[i], bel[j]);
                } else if (i < j) {
                    g.cnte[bel[i]]++;
                }
            }
        }
        return g;
    }
};

一般图最大匹配(带花树算法)【久远】

2021-12-24

struct Graph {
    int n;
    std::vector<std::vector<int>> e;
    Graph(int n) : n(n), e(n) {}
    void addEdge(int u, int v) {
        e[u].push_back(v);
        e[v].push_back(u);
    }
    std::vector<int> findMatching() {
        std::vector<int> match(n, -1), vis(n), link(n), f(n), dep(n);
        
        // disjoint set union
        auto find = [&](int u) {
            while (f[u] != u)
                u = f[u] = f[f[u]];
            return u;
        };
        
        auto lca = [&](int u, int v) {
            u = find(u);
            v = find(v);
            while (u != v) {
                if (dep[u] < dep[v])
                    std::swap(u, v);
                u = find(link[match[u]]);
            }
            return u;
        };
        
        std::queue<int> que;
        auto blossom = [&](int u, int v, int p) {
            while (find(u) != p) {
                link[u] = v;
                v = match[u];
                if (vis[v] == 0) {
                    vis[v] = 1;
                    que.push(v);
                }
                f[u] = f[v] = p;
                u = link[v];
            }
        };
        
        // find an augmenting path starting from u and augment (if exist)
        auto augment = [&](int u) {
            
            while (!que.empty())
                que.pop();
            
            std::iota(f.begin(), f.end(), 0);
            
            // vis = 0 corresponds to inner vertices, vis = 1 corresponds to outer vertices
            std::fill(vis.begin(), vis.end(), -1);
            
            que.push(u);
            vis[u] = 1;
            dep[u] = 0;
        
            while (!que.empty()){
                int u = que.front();
                que.pop();
                for (auto v : e[u]) {
                    if (vis[v] == -1) {
                        
                        vis[v] = 0;
                        link[v] = u;
                        dep[v] = dep[u] + 1;
                        
                        // found an augmenting path
                        if (match[v] == -1) {
                            for (int x = v, y = u, temp; y != -1; x = temp, y = x == -1 ? -1 : link[x]) {
                                temp = match[y];
                                match[x] = y;
                                match[y] = x;
                            }
                            return;
                        }
                        
                        vis[match[v]] = 1;
                        dep[match[v]] = dep[u] + 2;
                        que.push(match[v]);
                        
                    } else if (vis[v] == 1 && find(v) != find(u)) {
                        // found a blossom
                        int p = lca(u, v);
                        blossom(u, v, p);
                        blossom(v, u, p);
                    }
                }
            }
            
        };
        
        // find a maximal matching greedily (decrease constant)
        auto greedy = [&]() {
            
            for (int u = 0; u < n; ++u) {
                if (match[u] != -1)
                    continue;
                for (auto v : e[u]) {
                    if (match[v] == -1) {
                        match[u] = v;
                        match[v] = u;
                        break;
                    }
                }
            }
        };
        
        greedy();
        
        for (int u = 0; u < n; ++u)
            if (match[u] == -1)
                augment(u);
        
        return match;
    }
};

最大流

2023-07-21

constexpr int inf = 1E9;
template<class T>
struct MaxFlow {
    struct _Edge {
        int to;
        T cap;
        _Edge(int to, T cap) : to(to), cap(cap) {}
    };
     
    int n;
    std::vector<_Edge> e;
    std::vector<std::vector<int>> g;
    std::vector<int> cur, h;
     
    MaxFlow() {}
    MaxFlow(int n) {
        init(n);
    }
     
    void init(int n) {
        this->n = n;
        e.clear();
        g.assign(n, {});
        cur.resize(n);
        h.resize(n);
    }
     
    bool bfs(int s, int t) {
        h.assign(n, -1);
        std::queue<int> que;
        h[s] = 0;
        que.push(s);
        while (!que.empty()) {
            const int u = que.front();
            que.pop();
            for (int i : g[u]) {
                auto [v, c] = e[i];
                if (c > 0 && h[v] == -1) {
                    h[v] = h[u] + 1;
                    if (v == t) {
                        return true;
                    }
                    que.push(v);
                }
            }
        }
        return false;
    }
     
    T dfs(int u, int t, T f) {
        if (u == t) {
            return f;
        }
        auto r = f;
        for (int &i = cur[u]; i < int(g[u].size()); ++i) {
            const int j = g[u][i];
            auto [v, c] = e[j];
            if (c > 0 && h[v] == h[u] + 1) {
                auto a = dfs(v, t, std::min(r, c));
                e[j].cap -= a;
                e[j ^ 1].cap += a;
                r -= a;
                if (r == 0) {
                    return f;
                }
            }
        }
        return f - r;
    }
    void addEdge(int u, int v, T c) {
        g[u].push_back(e.size());
        e.emplace_back(v, c);
        g[v].push_back(e.size());
        e.emplace_back(u, 0);
    }
    T flow(int s, int t) {
        T ans = 0;
        while (bfs(s, t)) {
            cur.assign(n, 0);
            ans += dfs(s, t, std::numeric_limits<T>::max());
        }
        return ans;
    }
     
    std::vector<bool> minCut() {
        std::vector<bool> c(n);
        for (int i = 0; i < n; i++) {
            c[i] = (h[i] != -1);
        }
        return c;
    }
     
    struct Edge {
        int from;
        int to;
        T cap;
        T flow;
    };
    std::vector<Edge> edges() {
        std::vector<Edge> a;
        for (int i = 0; i < e.size(); i += 2) {
            Edge x;
            x.from = e[i + 1].to;
            x.to = e[i].to;
            x.cap = e[i].cap + e[i + 1].cap;
            x.flow = e[i + 1].cap;
            a.push_back(x);
        }
        return a;
    }
};

费用流

2022-12-12

struct MCFGraph {
    struct Edge {
        int v, c, f;
        Edge(int v, int c, int f) : v(v), c(c), f(f) {}
    };
    const int n;
    std::vector<Edge> e;
    std::vector<std::vector<int>> g;
    std::vector<i64> h, dis;
    std::vector<int> pre;
    bool dijkstra(int s, int t) {
        dis.assign(n, std::numeric_limits<i64>::max());
        pre.assign(n, -1);
        std::priority_queue<std::pair<i64, int>, std::vector<std::pair<i64, int>>, std::greater<std::pair<i64, int>>> que;
        dis[s] = 0;
        que.emplace(0, s);
        while (!que.empty()) {
            i64 d = que.top().first;
            int u = que.top().second;
            que.pop();
            if (dis[u] < d) continue;
            for (int i : g[u]) {
                int v = e[i].v;
                int c = e[i].c;
                int f = e[i].f;
                if (c > 0 && dis[v] > d + h[u] - h[v] + f) {
                    dis[v] = d + h[u] - h[v] + f;
                    pre[v] = i;
                    que.emplace(dis[v], v);
                }
            }
        }
        return dis[t] != std::numeric_limits<i64>::max();
    }
    MCFGraph(int n) : n(n), g(n) {}
    void addEdge(int u, int v, int c, int f) {
        if (f < 0) {
            g[u].push_back(e.size());
            e.emplace_back(v, 0, f);
            g[v].push_back(e.size());
            e.emplace_back(u, c, -f);
        } else {
            g[u].push_back(e.size());
            e.emplace_back(v, c, f);
            g[v].push_back(e.size());
            e.emplace_back(u, 0, -f);
        }
    }
    std::pair<int, i64> flow(int s, int t) {
        int flow = 0;
        i64 cost = 0;
        h.assign(n, 0);
        while (dijkstra(s, t)) {
            for (int i = 0; i < n; ++i) h[i] += dis[i];
            int aug = std::numeric_limits<int>::max();
            for (int i = t; i != s; i = e[pre[i] ^ 1].v) aug = std::min(aug, e[pre[i]].c);
            for (int i = t; i != s; i = e[pre[i] ^ 1].v) {
                e[pre[i]].c -= aug;
                e[pre[i] ^ 1].c += aug;
            }
            flow += aug;
            cost += i64(aug) * h[t];
        }
        return std::make_pair(flow, cost);
    }
};

2-Sat【久远】

2022-06-12

struct TwoSat {
    int n;
    std::vector<std::vector<int>> e;
    std::vector<bool> ans;
    TwoSat(int n) : n(n), e(2 * n), ans(n) {}
    void addClause(int u, bool f, int v, bool g) {
        e[2 * u + !f].push_back(2 * v + g);
        e[2 * v + !g].push_back(2 * u + f);
    }
    bool satisfiable() {
        std::vector<int> id(2 * n, -1), dfn(2 * n, -1), low(2 * n, -1);
        std::vector<int> stk;
        int now = 0, cnt = 0;
        std::function<void(int)> tarjan = [&](int u) {
            stk.push_back(u);
            dfn[u] = low[u] = now++;
            for (auto v : e[u]) {
                if (dfn[v] == -1) {
                    tarjan(v);
                    low[u] = std::min(low[u], low[v]);
                } else if (id[v] == -1) {
                    low[u] = std::min(low[u], dfn[v]);
                }
            }
            if (dfn[u] == low[u]) {
                int v;
                do {
                    v = stk.back();
                    stk.pop_back();
                    id[v] = cnt;
                } while (v != u);
                ++cnt;
            }
        };
        for (int i = 0; i < 2 * n; ++i) if (dfn[i] == -1) tarjan(i);
        for (int i = 0; i < n; ++i) {
            if (id[2 * i] == id[2 * i + 1]) return false;
            ans[i] = id[2 * i] > id[2 * i + 1];
        }
        return true;
    }
    std::vector<bool> answer() { return ans; }
};

字符串

Z函数

2023-08-11

std::vector<int> zFunction(std::string s) {
    int n = s.size();
    std::vector<int> z(n + 1);
    z[0] = n;
    for (int i = 1, j = 1; i < n; i++) {
        z[i] = std::max(0, std::min(j + z[j] - i, z[i - j]));
        while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
            z[i]++;
        }
        if (i + z[i] > j + z[j]) {
            j = i;
        }
    }
    return z;
}

SAM

2023-04-29

struct SAM {
    static constexpr int ALPHABET_SIZE = 26;
    struct Node {
        int len;
        int link;
        std::array<int, ALPHABET_SIZE> next;
        Node() : len{}, link{}, next{} {}
    };
    std::vector<Node> t;
    SAM() {
        init();
    }
    void init() {
        t.assign(2, Node());
        t[0].next.fill(1);
        t[0].len = -1;
    }
    int newNode() {
        t.emplace_back();
        return t.size() - 1;
    }
    int extend(int p, int c) {
        if (t[p].next[c]) {
            int q = t[p].next[c];
            if (t[q].len == t[p].len + 1) {
                return q;
            }
            int r = newNode();
            t[r].len = t[p].len + 1;
            t[r].link = t[q].link;
            t[r].next = t[q].next;
            t[q].link = r;
            while (t[p].next[c] == q) {
                t[p].next[c] = r;
                p = t[p].link;
            }
            return r;
        }
        int cur = newNode();
        t[cur].len = t[p].len + 1;
        while (!t[p].next[c]) {
            t[p].next[c] = cur;
            p = t[p].link;
        }
        t[cur].link = extend(p, c);
        return cur;
    }
};

AC自动机【久远】

2021-07-07

constexpr int N = 3e5 + 30, A = 26;

struct Node {
    int fail;
    int sum;
    int next[A];
    Node() : fail(-1), sum(0) {
        std::memset(next, -1, sizeof(next));
    }
} node[N];

int cnt = 0;
int bin[N];
int nBin = 0;

int newNode() {
    int p = nBin > 0 ? bin[--nBin] : cnt++;
    node[p] = Node();
    return p;
}

struct AC {
    std::vector<int> x;
    AC(AC &&a) : x(std::move(a.x)) {}
    AC(std::vector<std::string> s, std::vector<int> w) {
        x = {newNode(), newNode()};
        std::fill(node[x[0]].next, node[x[0]].next + A, x[1]);
        node[x[1]].fail = x[0];
        
        for (int i = 0; i < int(s.size()); i++) {
            int p = x[1];
            for (int j = 0; j < int(s[i].length()); j++) {
                int c = s[i][j] - 'a';
                if (node[p].next[c] == -1) {
                    int u = newNode();
                    x.push_back(u);
                    node[p].next[c] = u;
                }
                p = node[p].next[c];
            }
            node[p].sum += w[i];
        }
        
        std::queue<int> que;
        que.push(x[1]);
        while (!que.empty()) {
            int u = que.front();
            que.pop();
            node[u].sum += node[node[u].fail].sum;
            for (int c = 0; c < A; c++) {
                if (node[u].next[c] == -1) {
                    node[u].next[c] = node[node[u].fail].next[c];
                } else {
                    node[node[u].next[c]].fail = node[node[u].fail].next[c];
                    que.push(node[u].next[c]);
                }
            }
        }
    }
    ~AC() {
        for (auto p : x) {
            bin[nBin++] = p;
        }
    }
    i64 query(const std::string &s) const {
        i64 ans = 0;
        int p = x[1];
        for (int i = 0; i < int(s.length()); i++)  {
            int c = s[i] - 'a';
            p = node[p].next[c];
            ans += node[p].sum;
        }
        return ans;
    }
};

标签:std,vector,return,int,rhs,算法,jiangly,const,模板
From: https://www.cnblogs.com/WIDA/p/17633758.html

相关文章

  • COMP123 2D图形算法难点讨论
    COMP123Primitive2DDrawingAssignmentSpecificationInthisassignment,youwillberequiredtoimplementsomeofthealgorithmsthatwehavediscussedinlectures.Youwillneedtowriteagenericframebufferclassthatisabletorepresentimagesandd......
  • CSSE7610互斥算法分析
    Assignment1:MutualexclusionCSSE7610Answerquestions1to3below.Thisassignmentisworth25%ofyourfinalmark.Itistobecompletedindividually,andyouarerequiredtoreadandunderstandtheSchoolStatementonMisconduct,availableontheSchoo......
  • Lnton 羚通智能分析算法智慧停车检测算法
    智慧停车算法是指利用各种传感器技术和数据分析方法,通过智能化的方式管理和优化停车场资源利用的算法。近年来,为了扩充停车位的数量,缓解停车压力,路边停车的方式开始逐步推广。对于路边车位的管理,基于视觉的方案与人工、咪表、地磁等方案相比,其成本更低且易于部署,具有较大的研究和推......
  • Linux组件安装部署手册模板
    Linux系统-部署-运维系列导航 背景说明组件安装步骤是基本通用的,大部分组件安装都需要经过一些必须的流程,才能成为有效的服务。 本文以Linux(CentOS7)系统为基础介绍,其他操作系统原理一样,只是部分操作的具体执行方式需要根据操作系统调整。  根据经验总结,组件安装一般都......
  • Java 迪杰斯特拉 算法实现
    在这里记录下自己写的迪杰斯特拉代码。思路本质是贪心算法:开始时设定两个集合:S,T;S存入已经遍历的点,T存所有未遍历的点;首先将起点放入S中,更新T中所有节点的权重(和起点联通的节点更新权重,其他节点权重设为无穷大);在T中寻找权重最低的点(假设是M点),将M点放入S中,同时更新T里所有节......
  • Lnton羚通视频分析算法平台OpenCV-Python直方图反向投影教程
    OpenCVPython直方图反向投影用于图像分割和查找感兴趣目标。简单的说,会创建一个与输入图像同样大小的图像(单通道),每个像素对应像素属于目标的概率。更简单的说就是,输出图像在感兴趣的目标处更白。常常与camshift算法一起使用,用于目标跟踪(查找目标)如何使用呢?创建一个图像的直方......
  • Lnton羚通视频分析算法平台OpenCV-Python教程 图像变换(频域变换)
     频域变换是一种将信号从时间域表示转换为频率域表示的方法。它可以帮助我们理解信号的频率成分以及进行信号处理和分析。常见的频域变换方法包括傅里叶变换(FourierTransform)和离散傅里叶变换(DiscreteFourierTransform,DFT)。以下是它们的简要介绍:傅里叶变换(FourierTransform):......
  • 《落实算法安全主体责任基本情况》范文,修改主体即可提交
      在数字化时代,算法已经成为了商业竞争和创新的关键要素。然而,算法的广泛应用也引发了对其安全性和合规性的关切。《落实算法安全主体责任基本情况》作为算法备案过程中的一环,具有极高的专业性,需要企业全面考虑算法的隐私保护、数据合规、风险预防等一系列关键问题。正因如......
  • Lnton羚通算法算力云平台【PyTorch】教程:torch.nn.Mish
    torch.nn.Mish是PyTorch中的一个激活函数类,它实现了Mish激活函数。Mish是一种近年来提出的激活函数,它在激活函数的设计中引入了自适应斜率。Mish函数的定义如下:Mish(x)=x*tanh(softplus(x))其中softplus(x)是软正值函数,定义为softplus(x)=log(1+exp(x))。Mish函......
  • mp之id雪花算法及其他主键策略
    默认主键策略为ASSIGN_ID(全局唯一id)AUTO为自增id,需要在数据库中设置主键自增NONE为不设置主键策略INPUT将主键设置为手动输入ASSIGN_UUID也是全局唯一id 实现步骤:在实体类中加入注解@TableId(type=IDType.AUTO)即可 ......