目录
自用,尽可能找的最新的版本,部分提交来自于GYM、牛客多校。
数据结构
树状数组
template <typename T>
struct Fenwick {
int n;
std::vector<T> a;
Fenwick(int n = 0) {
init(n);
}
void init(int n) {
this->n = n;
a.assign(n, T());
}
void add(int x, T v) {
for (int i = x + 1; i <= n; i += i & -i) {
a[i - 1] += v;
}
}
T sum(int x) {
auto ans = T();
for (int i = x; i > 0; i -= i & -i) {
ans += a[i - 1];
}
return ans;
}
T rangeSum(int l, int r) {
return sum(r) - sum(l);
}
int kth(T k) {
int x = 0;
for (int i = 1 << std::__lg(n); i; i /= 2) {
if (x + i <= n && k >= a[x + i - 1]) {
x += i;
k -= a[x - 1];
}
}
return x;
}
};
并查集
struct DSU {
std::vector<int> f, siz;
DSU() {}
DSU(int n) {
init(n);
}
void init(int n) {
f.resize(n);
std::iota(f.begin(), f.end(), 0);
siz.assign(n, 1);
}
int find(int x) {
while (x != f[x]) {
x = f[x] = f[f[x]];
}
return x;
}
bool same(int x, int y) {
return find(x) == find(y);
}
bool merge(int x, int y) {
x = find(x);
y = find(y);
if (x == y) {
return false;
}
siz[x] += siz[y];
f[y] = x;
return true;
}
int size(int x) {
return siz[find(x)];
}
};
线段树
其一
template<class Info>
struct SegmentTree {
int n;
std::vector<Info> info;
SegmentTree() : n(0) {}
SegmentTree(int n_, Info v_ = Info()) {
init(n_, v_);
}
template<class T>
SegmentTree(std::vector<T> init_) {
init(init_);
}
void init(int n_, Info v_ = Info()) {
init(std::vector(n_, v_));
}
template<class T>
void init(std::vector<T> init_) {
n = init_.size();
info.assign(4 << std::__lg(n), Info());
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
info[p] = init_[l];
return;
}
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
pull(p);
};
build(1, 0, n);
}
void pull(int p) {
info[p] = info[2 * p] + info[2 * p + 1];
}
void modify(int p, int l, int r, int x, const Info &v) {
if (r - l == 1) {
info[p] = v;
return;
}
int m = (l + r) / 2;
if (x < m) {
modify(2 * p, l, m, x, v);
} else {
modify(2 * p + 1, m, r, x, v);
}
pull(p);
}
void modify(int p, const Info &v) {
modify(1, 0, n, p, v);
}
Info rangeQuery(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return Info();
}
if (l >= x && r <= y) {
return info[p];
}
int m = (l + r) / 2;
return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
}
Info rangeQuery(int l, int r) {
return rangeQuery(1, 0, n, l, r);
}
template<class F>
int findFirst(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = findFirst(2 * p, l, m, x, y, pred);
if (res == -1) {
res = findFirst(2 * p + 1, m, r, x, y, pred);
}
return res;
}
template<class F>
int findFirst(int l, int r, F pred) {
return findFirst(1, 0, n, l, r, pred);
}
template<class F>
int findLast(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = findLast(2 * p + 1, m, r, x, y, pred);
if (res == -1) {
res = findLast(2 * p, l, m, x, y, pred);
}
return res;
}
template<class F>
int findLast(int l, int r, F pred) {
return findLast(1, 0, n, l, r, pred);
}
};
struct Info {
int cnt = 0;
i64 sum = 0;
i64 ans = 0;
};
Info operator+(Info a, Info b) {
Info c;
c.cnt = a.cnt + b.cnt;
c.sum = a.sum + b.sum;
c.ans = a.ans + b.ans + a.cnt * b.sum - a.sum * b.cnt;
return c;
}
其二
template<class Info>
struct SegmentTree {
int n;
std::vector<Info> info;
SegmentTree() : n(0) {}
SegmentTree(int n_, Info v_ = Info()) {
init(n_, v_);
}
template<class T>
SegmentTree(std::vector<T> init_) {
init(init_);
}
void init(int n_, Info v_ = Info()) {
init(std::vector(n_, v_));
}
template<class T>
void init(std::vector<T> init_) {
n = init_.size();
info.assign(4 << std::__lg(n), Info());
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
info[p] = init_[l];
return;
}
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
pull(p);
};
build(1, 0, n);
}
void pull(int p) {
info[p] = info[2 * p] + info[2 * p + 1];
}
void modify(int p, int l, int r, int x, const Info &v) {
if (r - l == 1) {
info[p] = v;
return;
}
int m = (l + r) / 2;
if (x < m) {
modify(2 * p, l, m, x, v);
} else {
modify(2 * p + 1, m, r, x, v);
}
pull(p);
}
void modify(int p, const Info &v) {
modify(1, 0, n, p, v);
}
Info rangeQuery(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return Info();
}
if (l >= x && r <= y) {
return info[p];
}
int m = (l + r) / 2;
return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
}
Info rangeQuery(int l, int r) {
return rangeQuery(1, 0, n, l, r);
}
template<class F>
int findFirst(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = findFirst(2 * p, l, m, x, y, pred);
if (res == -1) {
res = findFirst(2 * p + 1, m, r, x, y, pred);
}
return res;
}
template<class F>
int findFirst(int l, int r, F pred) {
return findFirst(1, 0, n, l, r, pred);
}
template<class F>
int findLast(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = findLast(2 * p + 1, m, r, x, y, pred);
if (res == -1) {
res = findLast(2 * p, l, m, x, y, pred);
}
return res;
}
template<class F>
int findLast(int l, int r, F pred) {
return findLast(1, 0, n, l, r, pred);
}
};
struct Info {
int x = 0;
int cnt = 0;
};
Info operator+(Info a, Info b) {
if (a.x == b.x) {
return {a.x, a.cnt + b.cnt};
} else if (a.cnt > b.cnt) {
return {a.x, a.cnt - b.cnt};
} else {
return {b.x, b.cnt - a.cnt};
}
}
其三
template<class Info,
class Merge = std::plus<Info>>
struct SegmentTree {
const int n;
const Merge merge;
std::vector<Info> info;
SegmentTree(int n) : n(n), merge(Merge()), info(4 << std::__lg(n)) {}
SegmentTree(std::vector<Info> init) : SegmentTree(init.size()) {
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
info[p] = init[l];
return;
}
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
pull(p);
};
build(1, 0, n);
}
void pull(int p) {
info[p] = merge(info[2 * p], info[2 * p + 1]);
}
void modify(int p, int l, int r, int x, const Info &v) {
if (r - l == 1) {
info[p] = v;
return;
}
int m = (l + r) / 2;
if (x < m) {
modify(2 * p, l, m, x, v);
} else {
modify(2 * p + 1, m, r, x, v);
}
pull(p);
}
void modify(int p, const Info &v) {
modify(1, 0, n, p, v);
}
Info rangeQuery(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return Info();
}
if (l >= x && r <= y) {
return info[p];
}
int m = (l + r) / 2;
return merge(rangeQuery(2 * p, l, m, x, y), rangeQuery(2 * p + 1, m, r, x, y));
}
Info rangeQuery(int l, int r) {
return rangeQuery(1, 0, n, l, r);
}
};
struct Info {
int ans;
std::vector<std::array<int, 2>> a;
Info() : ans(0), a{} {}
Info(int x) : ans(0), a{{x, 1}} {}
};
void add(Info &c, int x, int l) {
if (c.a.empty()) {
c.a.push_back({x, l});
return;
}
auto &last = c.a.back();
if (l == 0) {
if (last[0] == x && last[1] == 0) {
return;
} else if (last[0] == !x && last[1] == 0) {
if (c.a.size() > 1) {
c.ans++;
c.a.pop_back();
add(c, x, l);
} else {
c.a.push_back({x, l});
}
} else if ((last[0] + last[1]) % 2 == x) {
c.a.push_back({x, l});
}
} else {
if (last[0] == x && last[1] == 0) {
c.a.pop_back();
add(c, x, l);
} else if (last[0] == !x && last[1] == 0) {
if (c.a.size() > 1) {
c.ans++;
c.a.pop_back();
add(c, x, l);
} else {
c.a.push_back({x, l});
}
} else if ((last[0] + last[1]) % 2 == x) {
last[1] += l;
} else if (l == 1 && last[1] == 1) {
c.a.pop_back();
add(c, x, 0);
} else if (l == 1) {
last[1]--;
add(c, x, 0);
} else if (last[1] == 1) {
c.a.pop_back();
add(c, x, 0);
add(c, !x, l - 1);
} else {
int t = std::min(last[1], l) - 1;
c.ans += t;
last[1] -= t;
add(c, (x + t) % 2, l - t);
}
}
}
Info operator+(const Info &a, const Info &b) {
if (a.a.empty()) {
return b;
}
if (b.a.empty()) {
return a;
}
Info c;
c.ans = a.ans + b.ans;
c.a = a.a;
for (auto [x, l] : b.a) {
add(c, x, l);
}
return c;
}
懒标记线段树
template<class Info, class Tag>
struct LazySegmentTree {
int n;
std::vector<Info> info;
std::vector<Tag> tag;
LazySegmentTree() : n(0) {}
LazySegmentTree(int n_, Info v_ = Info()) {
init(n_, v_);
}
template<class T>
LazySegmentTree(std::vector<T> init_) {
init(init_);
}
void init(int n_, Info v_ = Info()) {
init(std::vector(n_, v_));
}
template<class T>
void init(std::vector<T> init_) {
n = init_.size();
info.assign(4 << std::__lg(n), Info());
tag.assign(4 << std::__lg(n), Tag());
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
info[p] = init_[l];
return;
}
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
pull(p);
};
build(1, 0, n);
}
void pull(int p) {
info[p] = info[2 * p] + info[2 * p + 1];
}
void apply(int p, const Tag &v) {
info[p].apply(v);
tag[p].apply(v);
}
void push(int p) {
apply(2 * p, tag[p]);
apply(2 * p + 1, tag[p]);
tag[p] = Tag();
}
void modify(int p, int l, int r, int x, const Info &v) {
if (r - l == 1) {
info[p] = v;
return;
}
int m = (l + r) / 2;
push(p);
if (x < m) {
modify(2 * p, l, m, x, v);
} else {
modify(2 * p + 1, m, r, x, v);
}
pull(p);
}
void modify(int p, const Info &v) {
modify(1, 0, n, p, v);
}
Info rangeQuery(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return Info();
}
if (l >= x && r <= y) {
return info[p];
}
int m = (l + r) / 2;
push(p);
return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
}
Info rangeQuery(int l, int r) {
return rangeQuery(1, 0, n, l, r);
}
void rangeApply(int p, int l, int r, int x, int y, const Tag &v) {
if (l >= y || r <= x) {
return;
}
if (l >= x && r <= y) {
apply(p, v);
return;
}
int m = (l + r) / 2;
push(p);
rangeApply(2 * p, l, m, x, y, v);
rangeApply(2 * p + 1, m, r, x, y, v);
pull(p);
}
void rangeApply(int l, int r, const Tag &v) {
return rangeApply(1, 0, n, l, r, v);
}
template<class F>
int findFirst(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
push(p);
int res = findFirst(2 * p, l, m, x, y, pred);
if (res == -1) {
res = findFirst(2 * p + 1, m, r, x, y, pred);
}
return res;
}
template<class F>
int findFirst(int l, int r, F pred) {
return findFirst(1, 0, n, l, r, pred);
}
template<class F>
int findLast(int p, int l, int r, int x, int y, F pred) {
if (l >= y || r <= x || !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
push(p);
int res = findLast(2 * p + 1, m, r, x, y, pred);
if (res == -1) {
res = findLast(2 * p, l, m, x, y, pred);
}
return res;
}
template<class F>
int findLast(int l, int r, F pred) {
return findLast(1, 0, n, l, r, pred);
}
};
struct Tag {
i64 a = 0, b = 0;
void apply(Tag t) {
a = std::min(a, b + t.a);
b += t.b;
}
};
int k;
struct Info {
i64 x = 0;
void apply(Tag t) {
x += t.a;
if (x < 0) {
x = (x % k + k) % k;
}
x += t.b - t.a;
}
};
Info operator+(Info a, Info b) {
return {a.x + b.x};
}
取模类(新版)
template<class T>
constexpr T power(T a, i64 b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
constexpr i64 mul(i64 a, i64 b, i64 p) {
i64 res = a * b - i64(1.L * a * b / p) * p;
res %= p;
if (res < 0) {
res += p;
}
return res;
}
template<i64 P>
struct MLong {
i64 x;
constexpr MLong() : x{} {}
constexpr MLong(i64 x) : x{norm(x % getMod())} {}
static i64 Mod;
constexpr static i64 getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(i64 Mod_) {
Mod = Mod_;
}
constexpr i64 norm(i64 x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr i64 val() const {
return x;
}
explicit constexpr operator i64() const {
return x;
}
constexpr MLong operator-() const {
MLong res;
res.x = norm(getMod() - x);
return res;
}
constexpr MLong inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MLong &operator*=(MLong rhs) & {
x = mul(x, rhs.x, getMod());
return *this;
}
constexpr MLong &operator+=(MLong rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MLong &operator-=(MLong rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MLong &operator/=(MLong rhs) & {
return *this *= rhs.inv();
}
friend constexpr MLong operator*(MLong lhs, MLong rhs) {
MLong res = lhs;
res *= rhs;
return res;
}
friend constexpr MLong operator+(MLong lhs, MLong rhs) {
MLong res = lhs;
res += rhs;
return res;
}
friend constexpr MLong operator-(MLong lhs, MLong rhs) {
MLong res = lhs;
res -= rhs;
return res;
}
friend constexpr MLong operator/(MLong lhs, MLong rhs) {
MLong res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
i64 v;
is >> v;
a = MLong(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
return os << a.val();
}
friend constexpr bool operator==(MLong lhs, MLong rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MLong lhs, MLong rhs) {
return lhs.val() != rhs.val();
}
};
template<>
i64 MLong<0LL>::Mod = i64(1E18) + 9;
template<int P>
struct MInt {
int x;
constexpr MInt() : x{} {}
constexpr MInt(i64 x) : x{norm(x % getMod())} {}
static int Mod;
constexpr static int getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(int Mod_) {
Mod = Mod_;
}
constexpr int norm(int x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr int val() const {
return x;
}
explicit constexpr operator int() const {
return x;
}
constexpr MInt operator-() const {
MInt res;
res.x = norm(getMod() - x);
return res;
}
constexpr MInt inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MInt &operator*=(MInt rhs) & {
x = 1LL * x * rhs.x % getMod();
return *this;
}
constexpr MInt &operator+=(MInt rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MInt &operator-=(MInt rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MInt &operator/=(MInt rhs) & {
return *this *= rhs.inv();
}
friend constexpr MInt operator*(MInt lhs, MInt rhs) {
MInt res = lhs;
res *= rhs;
return res;
}
friend constexpr MInt operator+(MInt lhs, MInt rhs) {
MInt res = lhs;
res += rhs;
return res;
}
friend constexpr MInt operator-(MInt lhs, MInt rhs) {
MInt res = lhs;
res -= rhs;
return res;
}
friend constexpr MInt operator/(MInt lhs, MInt rhs) {
MInt res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
i64 v;
is >> v;
a = MInt(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
return os << a.val();
}
friend constexpr bool operator==(MInt lhs, MInt rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MInt lhs, MInt rhs) {
return lhs.val() != rhs.val();
}
};
template<>
int MInt<0>::Mod = 998244353;
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();
constexpr int P = 1000000007;
using Z = MInt<P>;
取模类(旧版)
constexpr int P = 998244353;
using i64 = long long;
// assume -P <= x < 2P
int norm(int x) {
if (x < 0) {
x += P;
}
if (x >= P) {
x -= P;
}
return x;
}
template<class T>
T power(T a, i64 b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
struct Z {
int x;
Z(int x = 0) : x(norm(x)) {}
Z(i64 x) : x(norm(x % P)) {}
int val() const {
return x;
}
Z operator-() const {
return Z(norm(P - x));
}
Z inv() const {
assert(x != 0);
return power(*this, P - 2);
}
Z &operator*=(const Z &rhs) {
x = i64(x) * rhs.x % P;
return *this;
}
Z &operator+=(const Z &rhs) {
x = norm(x + rhs.x);
return *this;
}
Z &operator-=(const Z &rhs) {
x = norm(x - rhs.x);
return *this;
}
Z &operator/=(const Z &rhs) {
return *this *= rhs.inv();
}
friend Z operator*(const Z &lhs, const Z &rhs) {
Z res = lhs;
res *= rhs;
return res;
}
friend Z operator+(const Z &lhs, const Z &rhs) {
Z res = lhs;
res += rhs;
return res;
}
friend Z operator-(const Z &lhs, const Z &rhs) {
Z res = lhs;
res -= rhs;
return res;
}
friend Z operator/(const Z &lhs, const Z &rhs) {
Z res = lhs;
res /= rhs;
return res;
}
friend std::istream &operator>>(std::istream &is, Z &a) {
i64 v;
is >> v;
a = Z(v);
return is;
}
friend std::ostream &operator<<(std::ostream &os, const Z &a) {
return os << a.val();
}
};
树链剖分
struct HLD {
int n;
std::vector<int> siz, top, dep, parent, in, out, seq;
std::vector<std::vector<int>> adj;
int cur;
HLD() {}
HLD(int n) {
init(n);
}
void init(int n) {
this->n = n;
siz.resize(n);
top.resize(n);
dep.resize(n);
parent.resize(n);
in.resize(n);
out.resize(n);
seq.resize(n);
cur = 0;
adj.assign(n, {});
}
void addEdge(int u, int v) {
adj[u].push_back(v);
adj[v].push_back(u);
}
void work(int root = 0) {
top[root] = root;
dep[root] = 0;
parent[root] = -1;
dfs1(root);
dfs2(root);
}
void dfs1(int u) {
if (parent[u] != -1) {
adj[u].erase(std::find(adj[u].begin(), adj[u].end(), parent[u]));
}
siz[u] = 1;
for (auto &v : adj[u]) {
parent[v] = u;
dep[v] = dep[u] + 1;
dfs1(v);
siz[u] += siz[v];
if (siz[v] > siz[adj[u][0]]) {
std::swap(v, adj[u][0]);
}
}
}
void dfs2(int u) {
in[u] = cur++;
seq[in[u]] = u;
for (auto v : adj[u]) {
top[v] = v == adj[u][0] ? top[u] : v;
dfs2(v);
}
out[u] = cur;
}
int lca(int u, int v) {
while (top[u] != top[v]) {
if (dep[top[u]] > dep[top[v]]) {
u = parent[top[u]];
} else {
v = parent[top[v]];
}
}
return dep[u] < dep[v] ? u : v;
}
int dist(int u, int v) {
return dep[u] + dep[v] - 2 * dep[lca(u, v)];
}
int jump(int u, int k) {
if (dep[u] < k) {
return -1;
}
int d = dep[u] - k;
while (dep[top[u]] > d) {
u = parent[top[u]];
}
return seq[in[u] - dep[u] + d];
}
bool isAncester(int u, int v) {
return in[u] <= in[v] && in[v] < out[u];
}
int rootedParent(int u, int v) {
std::swap(u, v);
if (u == v) {
return u;
}
if (!isAncester(u, v)) {
return parent[u];
}
auto it = std::upper_bound(adj[u].begin(), adj[u].end(), v, [&](int x, int y) {
return in[x] < in[y];
}) - 1;
return *it;
}
int rootedSize(int u, int v) {
if (u == v) {
return n;
}
if (!isAncester(v, u)) {
return siz[v];
}
return n - siz[rootedParent(u, v)];
}
int rootedLca(int a, int b, int c) {
return lca(a, b) ^ lca(b, c) ^ lca(c, a);
}
};
Splay
struct Node {
Node *l = nullptr;
Node *r = nullptr;
int cnt = 0;
int cntnew = 0;
};
Node *add(int l, int r, int x, int isnew) {
Node *t = new Node;
t->cnt = 1;
t->cntnew = isnew;
if (r - l == 1) {
return t;
}
int m = (l + r) / 2;
if (x < m) {
t->l = add(l, m, x, isnew);
} else {
t->r = add(m, r, x, isnew);
}
return t;
}
struct Info {
Node *t = nullptr;
int psum = 0;
bool rev = false;
};
void pull(Node *t) {
t->cnt = (t->l ? t->l->cnt : 0) + (t->r ? t->r->cnt : 0);
t->cntnew = (t->l ? t->l->cntnew : 0) + (t->r ? t->r->cntnew : 0);
}
std::pair<Node *, Node *> split(Node *t, int l, int r, int x, bool rev) {
if (!t) {
return {t, t};
}
if (x == 0) {
return {nullptr, t};
}
if (x == t->cnt) {
return {t, nullptr};
}
if (r - l == 1) {
Node *t2 = new Node;
t2->cnt = t->cnt - x;
t->cnt = x;
return {t, t2};
}
Node *t2 = new Node;
int m = (l + r) / 2;
if (!rev) {
if (t->l && x <= t->l->cnt) {
std::tie(t->l, t2->l) = split(t->l, l, m, x, rev);
t2->r = t->r;
t->r = nullptr;
} else {
std::tie(t->r, t2->r) = split(t->r, m, r, x - (t->l ? t->l->cnt : 0), rev);
}
} else {
if (t->r && x <= t->r->cnt) {
std::tie(t->r, t2->r) = split(t->r, m, r, x, rev);
t2->l = t->l;
t->l = nullptr;
} else {
std::tie(t->l, t2->l) = split(t->l, l, m, x - (t->r ? t->r->cnt : 0), rev);
}
}
pull(t);
pull(t2);
return {t, t2};
}
Node *merge(Node *t1, Node *t2, int l, int r) {
if (!t1) {
return t2;
}
if (!t2) {
return t1;
}
if (r - l == 1) {
t1->cnt += t2->cnt;
t1->cntnew += t2->cntnew;
delete t2;
return t1;
}
int m = (l + r) / 2;
t1->l = merge(t1->l, t2->l, l, m);
t1->r = merge(t1->r, t2->r, m, r);
delete t2;
pull(t1);
return t1;
}
其他二叉树
其一
struct Node {
Node *l = nullptr;
Node *r = nullptr;
int sum = 0;
int sumodd = 0;
Node(Node *t) {
if (t) {
*this = *t;
}
}
};
Node *add(Node *t, int l, int r, int x, int v) {
t = new Node(t);
t->sum += v;
t->sumodd += (x % 2) * v;
if (r - l == 1) {
return t;
}
int m = (l + r) / 2;
if (x < m) {
t->l = add(t->l, l, m, x, v);
} else {
t->r = add(t->r, m, r, x, v);
}
return t;
}
int query1(Node *t1, Node *t2, int l, int r, int k) {
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int odd = (t1 && t1->r ? t1->r->sumodd : 0) - (t2 && t2->r ? t2->r->sumodd : 0);
int cnt = (t1 && t1->r ? t1->r->sum : 0) - (t2 && t2->r ? t2->r->sum : 0);
if (odd > 0 || cnt > k) {
return query1(t1 ? t1->r : t1, t2 ? t2->r : t2, m, r, k);
} else {
return query1(t1 ? t1->l : t1, t2 ? t2->l : t2, l, m, k - cnt);
}
}
std::array<int, 3> query2(Node *t1, Node *t2, int l, int r, int k) {
if (r - l == 1) {
int cnt = (t1 ? t1->sumodd : 0) - (t2 ? t2->sumodd : 0);
return {l, cnt, k};
}
int m = (l + r) / 2;
int cnt = (t1 && t1->r ? t1->r->sumodd : 0) - (t2 && t2->r ? t2->r->sumodd : 0);
if (cnt > k) {
return query2(t1 ? t1->r : t1, t2 ? t2->r : t2, m, r, k);
} else {
return query2(t1 ? t1->l : t1, t2 ? t2->l : t2, l, m, k - cnt);
}
}
其二
struct Node {
Node *l = nullptr;
Node *r = nullptr;
int cnt = 0;
};
Node *add(Node *t, int l, int r, int x) {
if (t) {
t = new Node(*t);
} else {
t = new Node;
}
t->cnt += 1;
if (r - l == 1) {
return t;
}
int m = (l + r) / 2;
if (x < m) {
t->l = add(t->l, l, m, x);
} else {
t->r = add(t->r, m, r, x);
}
return t;
}
int query(Node *t1, Node *t2, int l, int r, int x) {
int cnt = (t2 ? t2->cnt : 0) - (t1 ? t1->cnt : 0);
if (cnt == 0 || l >= x) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = query(t1 ? t1->r : t1, t2 ? t2->r : t2, m, r, x);
if (res == -1) {
res = query(t1 ? t1->l : t1, t2 ? t2->l : t2, l, m, x);
}
return res;
}
分数四则运算
template<class T>
struct Frac {
T num;
T den;
Frac(T num_, T den_) : num(num_), den(den_) {
if (den < 0) {
den = -den;
num = -num;
}
}
Frac() : Frac(0, 1) {}
Frac(T num_) : Frac(num_, 1) {}
explicit operator double() const {
return 1. * num / den;
}
Frac &operator+=(const Frac &rhs) {
num = num * rhs.den + rhs.num * den;
den *= rhs.den;
return *this;
}
Frac &operator-=(const Frac &rhs) {
num = num * rhs.den - rhs.num * den;
den *= rhs.den;
return *this;
}
Frac &operator*=(const Frac &rhs) {
num *= rhs.num;
den *= rhs.den;
return *this;
}
Frac &operator/=(const Frac &rhs) {
num *= rhs.den;
den *= rhs.num;
if (den < 0) {
num = -num;
den = -den;
}
return *this;
}
friend Frac operator+(Frac lhs, const Frac &rhs) {
return lhs += rhs;
}
friend Frac operator-(Frac lhs, const Frac &rhs) {
return lhs -= rhs;
}
friend Frac operator*(Frac lhs, const Frac &rhs) {
return lhs *= rhs;
}
friend Frac operator/(Frac lhs, const Frac &rhs) {
return lhs /= rhs;
}
friend Frac operator-(const Frac &a) {
return Frac(-a.num, a.den);
}
friend bool operator==(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den == rhs.num * lhs.den;
}
friend bool operator!=(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den != rhs.num * lhs.den;
}
friend bool operator<(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den < rhs.num * lhs.den;
}
friend bool operator>(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den > rhs.num * lhs.den;
}
friend bool operator<=(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den <= rhs.num * lhs.den;
}
friend bool operator>=(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den >= rhs.num * lhs.den;
}
friend std::ostream &operator<<(std::ostream &os, Frac x) {
T g = std::gcd(x.num, x.den);
if (x.den == g) {
return os << x.num / g;
} else {
return os << x.num / g << "/" << x.den / g;
}
}
};
数论
欧拉筛
std::vector<int> minp, primes;
void sieve(int n) {
minp.assign(n + 1, 0);
primes.clear();
for (int i = 2; i <= n; i++) {
if (minp[i] == 0) {
minp[i] = i;
primes.push_back(i);
}
for (auto p : primes) {
if (i * p > n) {
break;
}
minp[i * p] = p;
if (p == minp[i]) {
break;
}
}
}
}
组合数
struct Comb {
int n;
std::vector<Z> _fac;
std::vector<Z> _invfac;
std::vector<Z> _inv;
Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
Comb(int n) : Comb() {
init(n);
}
void init(int m) {
m = std::min(m, Z::getMod() - 1);
if (m <= n) return;
_fac.resize(m + 1);
_invfac.resize(m + 1);
_inv.resize(m + 1);
for (int i = n + 1; i <= m; i++) {
_fac[i] = _fac[i - 1] * i;
}
_invfac[m] = _fac[m].inv();
for (int i = m; i > n; i--) {
_invfac[i - 1] = _invfac[i] * i;
_inv[i] = _invfac[i] * _fac[i - 1];
}
n = m;
}
Z fac(int m) {
if (m > n) init(2 * m);
return _fac[m];
}
Z invfac(int m) {
if (m > n) init(2 * m);
return _invfac[m];
}
Z inv(int m) {
if (m > n) init(2 * m);
return _inv[m];
}
Z binom(int n, int m) {
if (n < m || m < 0) return 0;
return fac(n) * invfac(m) * invfac(n - m);
}
} comb;
多项式相关
std::vector<int> rev;
template<int P>
std::vector<MInt<P>> roots{0, 1};
template<int P>
constexpr MInt<P> findPrimitiveRoot() {
MInt<P> i = 2;
int k = __builtin_ctz(P - 1);
while (true) {
if (power(i, (P - 1) / 2) != 1) {
break;
}
i += 1;
}
return power(i, (P - 1) >> k);
}
template<int P>
constexpr MInt<P> primitiveRoot = findPrimitiveRoot<P>();
template<>
constexpr MInt<998244353> primitiveRoot<998244353> {31};
template<int P>
constexpr void dft(std::vector<MInt<P>> &a) {
int n = a.size();
if (int(rev.size()) != n) {
int k = __builtin_ctz(n) - 1;
rev.resize(n);
for (int i = 0; i < n; i++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
}
}
for (int i = 0; i < n; i++) {
if (rev[i] < i) {
std::swap(a[i], a[rev[i]]);
}
}
if (roots<P>.size() < n) {
int k = __builtin_ctz(roots<P>.size());
roots<P>.resize(n);
while ((1 << k) < n) {
auto e = power(primitiveRoot<P>, 1 << (__builtin_ctz(P - 1) - k - 1));
for (int i = 1 << (k - 1); i < (1 << k); i++) {
roots<P>[2 * i] = roots<P>[i];
roots<P>[2 * i + 1] = roots<P>[i] * e;
}
k++;
}
}
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
MInt<P> u = a[i + j];
MInt<P> v = a[i + j + k] * roots<P>[k + j];
a[i + j] = u + v;
a[i + j + k] = u - v;
}
}
}
}
template<int P>
constexpr void idft(std::vector<MInt<P>> &a) {
int n = a.size();
std::reverse(a.begin() + 1, a.end());
dft(a);
MInt<P> inv = (1 - P) / n;
for (int i = 0; i < n; i++) {
a[i] *= inv;
}
}
template<int P = 998244353>
struct Poly : public std::vector<MInt<P>> {
using Value = MInt<P>;
Poly() : std::vector<Value>() {}
explicit constexpr Poly(int n) : std::vector<Value>(n) {}
explicit constexpr Poly(const std::vector<Value> &a) : std::vector<Value>(a) {}
constexpr Poly(const std::initializer_list<Value> &a) : std::vector<Value>(a) {}
template<class InputIt, class = std::_RequireInputIter<InputIt>>
explicit constexpr Poly(InputIt first, InputIt last) : std::vector<Value>(first, last) {}
template<class F>
explicit constexpr Poly(int n, F f) : std::vector<Value>(n) {
for (int i = 0; i < n; i++) {
(*this)[i] = f(i);
}
}
constexpr Poly shift(int k) const {
if (k >= 0) {
auto b = *this;
b.insert(b.begin(), k, 0);
return b;
} else if (this->size() <= -k) {
return Poly();
} else {
return Poly(this->begin() + (-k), this->end());
}
}
constexpr Poly trunc(int k) const {
Poly f = *this;
f.resize(k);
return f;
}
constexpr friend Poly operator+(const Poly &a, const Poly &b) {
Poly res(std::max(a.size(), b.size()));
for (int i = 0; i < a.size(); i++) {
res[i] += a[i];
}
for (int i = 0; i < b.size(); i++) {
res[i] += b[i];
}
return res;
}
constexpr friend Poly operator-(const Poly &a, const Poly &b) {
Poly res(std::max(a.size(), b.size()));
for (int i = 0; i < a.size(); i++) {
res[i] += a[i];
}
for (int i = 0; i < b.size(); i++) {
res[i] -= b[i];
}
return res;
}
constexpr friend Poly operator-(const Poly &a) {
std::vector<Value> res(a.size());
for (int i = 0; i < int(res.size()); i++) {
res[i] = -a[i];
}
return Poly(res);
}
constexpr friend Poly operator*(Poly a, Poly b) {
if (a.size() == 0 || b.size() == 0) {
return Poly();
}
if (a.size() < b.size()) {
std::swap(a, b);
}
int n = 1, tot = a.size() + b.size() - 1;
while (n < tot) {
n *= 2;
}
if (((P - 1) & (n - 1)) != 0 || b.size() < 128) {
Poly c(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
c[i + j] += a[i] * b[j];
}
}
return c;
}
a.resize(n);
b.resize(n);
dft(a);
dft(b);
for (int i = 0; i < n; ++i) {
a[i] *= b[i];
}
idft(a);
a.resize(tot);
return a;
}
constexpr friend Poly operator*(Value a, Poly b) {
for (int i = 0; i < int(b.size()); i++) {
b[i] *= a;
}
return b;
}
constexpr friend Poly operator*(Poly a, Value b) {
for (int i = 0; i < int(a.size()); i++) {
a[i] *= b;
}
return a;
}
constexpr friend Poly operator/(Poly a, Value b) {
for (int i = 0; i < int(a.size()); i++) {
a[i] /= b;
}
return a;
}
constexpr Poly &operator+=(Poly b) {
return (*this) = (*this) + b;
}
constexpr Poly &operator-=(Poly b) {
return (*this) = (*this) - b;
}
constexpr Poly &operator*=(Poly b) {
return (*this) = (*this) * b;
}
constexpr Poly &operator*=(Value b) {
return (*this) = (*this) * b;
}
constexpr Poly &operator/=(Value b) {
return (*this) = (*this) / b;
}
constexpr Poly deriv() const {
if (this->empty()) {
return Poly();
}
Poly res(this->size() - 1);
for (int i = 0; i < this->size() - 1; ++i) {
res[i] = (i + 1) * (*this)[i + 1];
}
return res;
}
constexpr Poly integr() const {
Poly res(this->size() + 1);
for (int i = 0; i < this->size(); ++i) {
res[i + 1] = (*this)[i] / (i + 1);
}
return res;
}
constexpr Poly inv(int m) const {
Poly x{(*this)[0].inv()};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{2} - trunc(k) * x)).trunc(k);
}
return x.trunc(m);
}
constexpr Poly log(int m) const {
return (deriv() * inv(m)).integr().trunc(m);
}
constexpr Poly exp(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{1} - x.log(k) + trunc(k))).trunc(k);
}
return x.trunc(m);
}
constexpr Poly pow(int k, int m) const {
int i = 0;
while (i < this->size() && (*this)[i] == 0) {
i++;
}
if (i == this->size() || 1LL * i * k >= m) {
return Poly(m);
}
Value v = (*this)[i];
auto f = shift(-i) * v.inv();
return (f.log(m - i * k) * k).exp(m - i * k).shift(i * k) * power(v, k);
}
constexpr Poly sqrt(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x + (trunc(k) * x.inv(k)).trunc(k)) * CInv<2, P>;
}
return x.trunc(m);
}
constexpr Poly mulT(Poly b) const {
if (b.size() == 0) {
return Poly();
}
int n = b.size();
std::reverse(b.begin(), b.end());
return ((*this) * b).shift(-(n - 1));
}
constexpr std::vector<Value> eval(std::vector<Value> x) const {
if (this->size() == 0) {
return std::vector<Value>(x.size(), 0);
}
const int n = std::max(x.size(), this->size());
std::vector<Poly> q(4 * n);
std::vector<Value> ans(x.size());
x.resize(n);
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
q[p] = Poly{1, -x[l]};
} else {
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
q[p] = q[2 * p] * q[2 * p + 1];
}
};
build(1, 0, n);
std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
if (r - l == 1) {
if (l < int(ans.size())) {
ans[l] = num[0];
}
} else {
int m = (l + r) / 2;
work(2 * p, l, m, num.mulT(q[2 * p + 1]).resize(m - l));
work(2 * p + 1, m, r, num.mulT(q[2 * p]).resize(r - m));
}
};
work(1, 0, n, mulT(q[1].inv(n)));
return ans;
}
};
template<int P = 998244353>
Poly<P> berlekampMassey(const Poly<P> &s) {
Poly<P> c;
Poly<P> oldC;
int f = -1;
for (int i = 0; i < s.size(); i++) {
auto delta = s[i];
for (int j = 1; j <= c.size(); j++) {
delta -= c[j - 1] * s[i - j];
}
if (delta == 0) {
continue;
}
if (f == -1) {
c.resize(i + 1);
f = i;
} else {
auto d = oldC;
d *= -1;
d.insert(d.begin(), 1);
MInt<P> df1 = 0;
for (int j = 1; j <= d.size(); j++) {
df1 += d[j - 1] * s[f + 1 - j];
}
assert(df1 != 0);
auto coef = delta / df1;
d *= coef;
Poly<P> zeros(i - f - 1);
zeros.insert(zeros.end(), d.begin(), d.end());
d = zeros;
auto temp = c;
c += d;
if (i - temp.size() > f - oldC.size()) {
oldC = temp;
f = i;
}
}
}
c *= -1;
c.insert(c.begin(), 1);
return c;
}
template<int P = 998244353>
MInt<P> linearRecurrence(Poly<P> p, Poly<P> q, i64 n) {
int m = q.size() - 1;
while (n > 0) {
auto newq = q;
for (int i = 1; i <= m; i += 2) {
newq[i] *= -1;
}
auto newp = p * newq;
newq = q * newq;
for (int i = 0; i < m; i++) {
p[i] = newp[i * 2 + n % 2];
}
for (int i = 0; i <= m; i++) {
q[i] = newq[i * 2];
}
n /= 2;
}
return p[0] / q[0];
}
几何
template<class T>
struct Point {
T x;
T y;
Point(T x_ = 0, T y_ = 0) : x(x_), y(y_) {}
template<class U>
operator Point<U>() {
return Point<U>(U(x), U(y));
}
Point &operator+=(Point p) & {
x += p.x;
y += p.y;
return *this;
}
Point &operator-=(Point p) & {
x -= p.x;
y -= p.y;
return *this;
}
Point &operator*=(T v) & {
x *= v;
y *= v;
return *this;
}
Point operator-() const {
return Point(-x, -y);
}
friend Point operator+(Point a, Point b) {
return a += b;
}
friend Point operator-(Point a, Point b) {
return a -= b;
}
friend Point operator*(Point a, T b) {
return a *= b;
}
friend Point operator*(T a, Point b) {
return b *= a;
}
friend bool operator==(Point a, Point b) {
return a.x == b.x && a.y == b.y;
}
friend std::istream &operator>>(std::istream &is, Point &p) {
return is >> p.x >> p.y;
}
friend std::ostream &operator<<(std::ostream &os, Point p) {
return os << "(" << p.x << ", " << p.y << ")";
}
};
template<class T>
T dot(Point<T> a, Point<T> b) {
return a.x * b.x + a.y * b.y;
}
template<class T>
T cross(Point<T> a, Point<T> b) {
return a.x * b.y - a.y * b.x;
}
template<class T>
T square(Point<T> p) {
return dot(p, p);
}
template<class T>
double length(Point<T> p) {
return std::sqrt(double(square(p)));
}
long double length(Point<long double> p) {
return std::sqrt(square(p));
}
template<class T>
struct Line {
Point<T> a;
Point<T> b;
Line(Point<T> a_ = Point<T>(), Point<T> b_ = Point<T>()) : a(a_), b(b_) {}
};
template<class T>
Point<T> rotate(Point<T> a) {
return Point(-a.y, a.x);
}
template<class T>
int sgn(Point<T> a) {
return a.y > 0 || (a.y == 0 && a.x > 0) ? 1 : -1;
}
template<class T>
bool pointOnLineLeft(Point<T> p, Line<T> l) {
return cross(l.b - l.a, p - l.a) > 0;
}
template<class T>
Point<T> lineIntersection(Line<T> l1, Line<T> l2) {
return l1.a + (l1.b - l1.a) * (cross(l2.b - l2.a, l1.a - l2.a) / cross(l2.b - l2.a, l1.a - l1.b));
}
template<class T>
bool pointOnSegment(Point<T> p, Line<T> l) {
return cross(p - l.a, l.b - l.a) == 0 && std::min(l.a.x, l.b.x) <= p.x && p.x <= std::max(l.a.x, l.b.x)
&& std::min(l.a.y, l.b.y) <= p.y && p.y <= std::max(l.a.y, l.b.y);
}
template<class T>
bool pointInPolygon(Point<T> a, std::vector<Point<T>> p) {
int n = p.size();
for (int i = 0; i < n; i++) {
if (pointOnSegment(a, Line(p[i], p[(i + 1) % n]))) {
return true;
}
}
int t = 0;
for (int i = 0; i < n; i++) {
auto u = p[i];
auto v = p[(i + 1) % n];
if (u.x < a.x && v.x >= a.x && pointOnLineLeft(a, Line(v, u))) {
t ^= 1;
}
if (u.x >= a.x && v.x < a.x && pointOnLineLeft(a, Line(u, v))) {
t ^= 1;
}
}
return t == 1;
}
// 0 : not intersect
// 1 : strictly intersect
// 2 : overlap
// 3 : intersect at endpoint
template<class T>
std::tuple<int, Point<T>, Point<T>> segmentIntersection(Line<T> l1, Line<T> l2) {
if (std::max(l1.a.x, l1.b.x) < std::min(l2.a.x, l2.b.x)) {
return {0, Point<T>(), Point<T>()};
}
if (std::min(l1.a.x, l1.b.x) > std::max(l2.a.x, l2.b.x)) {
return {0, Point<T>(), Point<T>()};
}
if (std::max(l1.a.y, l1.b.y) < std::min(l2.a.y, l2.b.y)) {
return {0, Point<T>(), Point<T>()};
}
if (std::min(l1.a.y, l1.b.y) > std::max(l2.a.y, l2.b.y)) {
return {0, Point<T>(), Point<T>()};
}
if (cross(l1.b - l1.a, l2.b - l2.a) == 0) {
if (cross(l1.b - l1.a, l2.a - l1.a) != 0) {
return {0, Point<T>(), Point<T>()};
} else {
auto maxx1 = std::max(l1.a.x, l1.b.x);
auto minx1 = std::min(l1.a.x, l1.b.x);
auto maxy1 = std::max(l1.a.y, l1.b.y);
auto miny1 = std::min(l1.a.y, l1.b.y);
auto maxx2 = std::max(l2.a.x, l2.b.x);
auto minx2 = std::min(l2.a.x, l2.b.x);
auto maxy2 = std::max(l2.a.y, l2.b.y);
auto miny2 = std::min(l2.a.y, l2.b.y);
Point<T> p1(std::max(minx1, minx2), std::max(miny1, miny2));
Point<T> p2(std::min(maxx1, maxx2), std::min(maxy1, maxy2));
if (!pointOnSegment(p1, l1)) {
std::swap(p1.y, p2.y);
}
if (p1 == p2) {
return {3, p1, p2};
} else {
return {2, p1, p2};
}
}
}
auto cp1 = cross(l2.a - l1.a, l2.b - l1.a);
auto cp2 = cross(l2.a - l1.b, l2.b - l1.b);
auto cp3 = cross(l1.a - l2.a, l1.b - l2.a);
auto cp4 = cross(l1.a - l2.b, l1.b - l2.b);
if ((cp1 > 0 && cp2 > 0) || (cp1 < 0 && cp2 < 0) || (cp3 > 0 && cp4 > 0) || (cp3 < 0 && cp4 < 0)) {
return {0, Point<T>(), Point<T>()};
}
Point p = lineIntersection(l1, l2);
if (cp1 != 0 && cp2 != 0 && cp3 != 0 && cp4 != 0) {
return {1, p, p};
} else {
return {3, p, p};
}
}
template<class T>
bool segmentInPolygon(Line<T> l, std::vector<Point<T>> p) {
int n = p.size();
if (!pointInPolygon(l.a, p)) {
return false;
}
if (!pointInPolygon(l.b, p)) {
return false;
}
for (int i = 0; i < n; i++) {
auto u = p[i];
auto v = p[(i + 1) % n];
auto w = p[(i + 2) % n];
auto [t, p1, p2] = segmentIntersection(l, Line(u, v));
if (t == 1) {
return false;
}
if (t == 0) {
continue;
}
if (t == 2) {
if (pointOnSegment(v, l) && v != l.a && v != l.b) {
if (cross(v - u, w - v) > 0) {
return false;
}
}
} else {
if (p1 != u && p1 != v) {
if (pointOnLineLeft(l.a, Line(v, u))
|| pointOnLineLeft(l.b, Line(v, u))) {
return false;
}
} else if (p1 == v) {
if (l.a == v) {
if (pointOnLineLeft(u, l)) {
if (pointOnLineLeft(w, l)
&& pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, l)
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
} else if (l.b == v) {
if (pointOnLineLeft(u, Line(l.b, l.a))) {
if (pointOnLineLeft(w, Line(l.b, l.a))
&& pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, Line(l.b, l.a))
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
} else {
if (pointOnLineLeft(u, l)) {
if (pointOnLineLeft(w, Line(l.b, l.a))
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, l)
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
}
}
}
}
return true;
}
template<class T>
std::vector<Point<T>> hp(std::vector<Line<T>> lines) {
std::sort(lines.begin(), lines.end(), [&](auto l1, auto l2) {
auto d1 = l1.b - l1.a;
auto d2 = l2.b - l2.a;
if (sgn(d1) != sgn(d2)) {
return sgn(d1) == 1;
}
return cross(d1, d2) > 0;
});
std::deque<Line<T>> ls;
std::deque<Point<T>> ps;
for (auto l : lines) {
if (ls.empty()) {
ls.push_back(l);
continue;
}
while (!ps.empty() && !pointOnLineLeft(ps.back(), l)) {
ps.pop_back();
ls.pop_back();
}
while (!ps.empty() && !pointOnLineLeft(ps[0], l)) {
ps.pop_front();
ls.pop_front();
}
if (cross(l.b - l.a, ls.back().b - ls.back().a) == 0) {
if (dot(l.b - l.a, ls.back().b - ls.back().a) > 0) {
if (!pointOnLineLeft(ls.back().a, l)) {
assert(ls.size() == 1);
ls[0] = l;
}
continue;
}
return {};
}
ps.push_back(lineIntersection(ls.back(), l));
ls.push_back(l);
}
while (!ps.empty() && !pointOnLineLeft(ps.back(), ls[0])) {
ps.pop_back();
ls.pop_back();
}
if (ls.size() <= 2) {
return {};
}
ps.push_back(lineIntersection(ls[0], ls.back()));
return std::vector(ps.begin(), ps.end());
}
有的时候会简写:
using V = long double;
using P = Point<V>;
using L = Line<V>;
图论
(有向图)强连通分量缩点
struct SCC {
int n;
std::vector<std::vector<int>> adj;
std::vector<int> stk;
std::vector<int> dfn, low, bel;
int cur, cnt;
SCC() {}
SCC(int n) {
init(n);
}
void init(int n) {
this->n = n;
adj.assign(n, {});
dfn.assign(n, -1);
low.resize(n);
bel.assign(n, -1);
stk.clear();
cur = cnt = 0;
}
void addEdge(int u, int v) {
adj[u].push_back(v);
}
void dfs(int x) {
dfn[x] = low[x] = cur++;
stk.push_back(x);
for (auto y : adj[x]) {
if (dfn[y] == -1) {
dfs(y);
low[x] = std::min(low[x], low[y]);
} else if (bel[y] == -1) {
low[x] = std::min(low[x], dfn[y]);
}
}
if (dfn[x] == low[x]) {
int y;
do {
y = stk.back();
bel[y] = cnt;
stk.pop_back();
} while (y != x);
cnt++;
}
}
std::vector<int> work() {
for (int i = 0; i < n; i++) {
if (dfn[i] == -1) {
dfs(i);
}
}
return bel;
}
};
(无向图)求解割边、割边缩点
struct EBCC {
int n;
std::vector<std::vector<int>> adj;
std::vector<int> stk;
std::vector<int> dfn, low, bel;
int cur, cnt;
EBCC() {}
EBCC(int n) {
init(n);
}
void init(int n) {
this->n = n;
adj.assign(n, {});
dfn.assign(n, -1);
low.resize(n);
bel.assign(n, -1);
stk.clear();
cur = cnt = 0;
}
void addEdge(int u, int v) {
adj[u].push_back(v);
adj[v].push_back(u);
}
void dfs(int x, int p) {
dfn[x] = low[x] = cur++;
stk.push_back(x);
for (auto y : adj[x]) {
if (y == p) {
continue;
}
if (dfn[y] == -1) {
E.emplace(x, y);
dfs(y, x);
low[x] = std::min(low[x], low[y]);
} else if (bel[y] == -1 && dfn[y] < dfn[x]) {
E.emplace(x, y);
low[x] = std::min(low[x], dfn[y]);
}
}
if (dfn[x] == low[x]) {
int y;
do {
y = stk.back();
bel[y] = cnt;
stk.pop_back();
} while (y != x);
cnt++;
}
}
std::vector<int> work() {
dfs(0, -1);
return bel;
}
struct Graph {
int n;
std::vector<std::pair<int, int>> edges;
std::vector<int> siz;
std::vector<int> cnte;
};
Graph compress() {
Graph g;
g.n = cnt;
g.siz.resize(cnt);
g.cnte.resize(cnt);
for (int i = 0; i < n; i++) {
g.siz[bel[i]]++;
for (auto j : adj[i]) {
if (bel[i] < bel[j]) {
g.edges.emplace_back(bel[i], bel[j]);
} else if (i < j) {
g.cnte[bel[i]]++;
}
}
}
return g;
}
};
一般图最大匹配(带花树算法)【久远】
struct Graph {
int n;
std::vector<std::vector<int>> e;
Graph(int n) : n(n), e(n) {}
void addEdge(int u, int v) {
e[u].push_back(v);
e[v].push_back(u);
}
std::vector<int> findMatching() {
std::vector<int> match(n, -1), vis(n), link(n), f(n), dep(n);
// disjoint set union
auto find = [&](int u) {
while (f[u] != u)
u = f[u] = f[f[u]];
return u;
};
auto lca = [&](int u, int v) {
u = find(u);
v = find(v);
while (u != v) {
if (dep[u] < dep[v])
std::swap(u, v);
u = find(link[match[u]]);
}
return u;
};
std::queue<int> que;
auto blossom = [&](int u, int v, int p) {
while (find(u) != p) {
link[u] = v;
v = match[u];
if (vis[v] == 0) {
vis[v] = 1;
que.push(v);
}
f[u] = f[v] = p;
u = link[v];
}
};
// find an augmenting path starting from u and augment (if exist)
auto augment = [&](int u) {
while (!que.empty())
que.pop();
std::iota(f.begin(), f.end(), 0);
// vis = 0 corresponds to inner vertices, vis = 1 corresponds to outer vertices
std::fill(vis.begin(), vis.end(), -1);
que.push(u);
vis[u] = 1;
dep[u] = 0;
while (!que.empty()){
int u = que.front();
que.pop();
for (auto v : e[u]) {
if (vis[v] == -1) {
vis[v] = 0;
link[v] = u;
dep[v] = dep[u] + 1;
// found an augmenting path
if (match[v] == -1) {
for (int x = v, y = u, temp; y != -1; x = temp, y = x == -1 ? -1 : link[x]) {
temp = match[y];
match[x] = y;
match[y] = x;
}
return;
}
vis[match[v]] = 1;
dep[match[v]] = dep[u] + 2;
que.push(match[v]);
} else if (vis[v] == 1 && find(v) != find(u)) {
// found a blossom
int p = lca(u, v);
blossom(u, v, p);
blossom(v, u, p);
}
}
}
};
// find a maximal matching greedily (decrease constant)
auto greedy = [&]() {
for (int u = 0; u < n; ++u) {
if (match[u] != -1)
continue;
for (auto v : e[u]) {
if (match[v] == -1) {
match[u] = v;
match[v] = u;
break;
}
}
}
};
greedy();
for (int u = 0; u < n; ++u)
if (match[u] == -1)
augment(u);
return match;
}
};
最大流
constexpr int inf = 1E9;
template<class T>
struct MaxFlow {
struct _Edge {
int to;
T cap;
_Edge(int to, T cap) : to(to), cap(cap) {}
};
int n;
std::vector<_Edge> e;
std::vector<std::vector<int>> g;
std::vector<int> cur, h;
MaxFlow() {}
MaxFlow(int n) {
init(n);
}
void init(int n) {
this->n = n;
e.clear();
g.assign(n, {});
cur.resize(n);
h.resize(n);
}
bool bfs(int s, int t) {
h.assign(n, -1);
std::queue<int> que;
h[s] = 0;
que.push(s);
while (!que.empty()) {
const int u = que.front();
que.pop();
for (int i : g[u]) {
auto [v, c] = e[i];
if (c > 0 && h[v] == -1) {
h[v] = h[u] + 1;
if (v == t) {
return true;
}
que.push(v);
}
}
}
return false;
}
T dfs(int u, int t, T f) {
if (u == t) {
return f;
}
auto r = f;
for (int &i = cur[u]; i < int(g[u].size()); ++i) {
const int j = g[u][i];
auto [v, c] = e[j];
if (c > 0 && h[v] == h[u] + 1) {
auto a = dfs(v, t, std::min(r, c));
e[j].cap -= a;
e[j ^ 1].cap += a;
r -= a;
if (r == 0) {
return f;
}
}
}
return f - r;
}
void addEdge(int u, int v, T c) {
g[u].push_back(e.size());
e.emplace_back(v, c);
g[v].push_back(e.size());
e.emplace_back(u, 0);
}
T flow(int s, int t) {
T ans = 0;
while (bfs(s, t)) {
cur.assign(n, 0);
ans += dfs(s, t, std::numeric_limits<T>::max());
}
return ans;
}
std::vector<bool> minCut() {
std::vector<bool> c(n);
for (int i = 0; i < n; i++) {
c[i] = (h[i] != -1);
}
return c;
}
struct Edge {
int from;
int to;
T cap;
T flow;
};
std::vector<Edge> edges() {
std::vector<Edge> a;
for (int i = 0; i < e.size(); i += 2) {
Edge x;
x.from = e[i + 1].to;
x.to = e[i].to;
x.cap = e[i].cap + e[i + 1].cap;
x.flow = e[i + 1].cap;
a.push_back(x);
}
return a;
}
};
费用流
struct MCFGraph {
struct Edge {
int v, c, f;
Edge(int v, int c, int f) : v(v), c(c), f(f) {}
};
const int n;
std::vector<Edge> e;
std::vector<std::vector<int>> g;
std::vector<i64> h, dis;
std::vector<int> pre;
bool dijkstra(int s, int t) {
dis.assign(n, std::numeric_limits<i64>::max());
pre.assign(n, -1);
std::priority_queue<std::pair<i64, int>, std::vector<std::pair<i64, int>>, std::greater<std::pair<i64, int>>> que;
dis[s] = 0;
que.emplace(0, s);
while (!que.empty()) {
i64 d = que.top().first;
int u = que.top().second;
que.pop();
if (dis[u] < d) continue;
for (int i : g[u]) {
int v = e[i].v;
int c = e[i].c;
int f = e[i].f;
if (c > 0 && dis[v] > d + h[u] - h[v] + f) {
dis[v] = d + h[u] - h[v] + f;
pre[v] = i;
que.emplace(dis[v], v);
}
}
}
return dis[t] != std::numeric_limits<i64>::max();
}
MCFGraph(int n) : n(n), g(n) {}
void addEdge(int u, int v, int c, int f) {
if (f < 0) {
g[u].push_back(e.size());
e.emplace_back(v, 0, f);
g[v].push_back(e.size());
e.emplace_back(u, c, -f);
} else {
g[u].push_back(e.size());
e.emplace_back(v, c, f);
g[v].push_back(e.size());
e.emplace_back(u, 0, -f);
}
}
std::pair<int, i64> flow(int s, int t) {
int flow = 0;
i64 cost = 0;
h.assign(n, 0);
while (dijkstra(s, t)) {
for (int i = 0; i < n; ++i) h[i] += dis[i];
int aug = std::numeric_limits<int>::max();
for (int i = t; i != s; i = e[pre[i] ^ 1].v) aug = std::min(aug, e[pre[i]].c);
for (int i = t; i != s; i = e[pre[i] ^ 1].v) {
e[pre[i]].c -= aug;
e[pre[i] ^ 1].c += aug;
}
flow += aug;
cost += i64(aug) * h[t];
}
return std::make_pair(flow, cost);
}
};
2-Sat【久远】
struct TwoSat {
int n;
std::vector<std::vector<int>> e;
std::vector<bool> ans;
TwoSat(int n) : n(n), e(2 * n), ans(n) {}
void addClause(int u, bool f, int v, bool g) {
e[2 * u + !f].push_back(2 * v + g);
e[2 * v + !g].push_back(2 * u + f);
}
bool satisfiable() {
std::vector<int> id(2 * n, -1), dfn(2 * n, -1), low(2 * n, -1);
std::vector<int> stk;
int now = 0, cnt = 0;
std::function<void(int)> tarjan = [&](int u) {
stk.push_back(u);
dfn[u] = low[u] = now++;
for (auto v : e[u]) {
if (dfn[v] == -1) {
tarjan(v);
low[u] = std::min(low[u], low[v]);
} else if (id[v] == -1) {
low[u] = std::min(low[u], dfn[v]);
}
}
if (dfn[u] == low[u]) {
int v;
do {
v = stk.back();
stk.pop_back();
id[v] = cnt;
} while (v != u);
++cnt;
}
};
for (int i = 0; i < 2 * n; ++i) if (dfn[i] == -1) tarjan(i);
for (int i = 0; i < n; ++i) {
if (id[2 * i] == id[2 * i + 1]) return false;
ans[i] = id[2 * i] > id[2 * i + 1];
}
return true;
}
std::vector<bool> answer() { return ans; }
};
字符串
Z函数
std::vector<int> zFunction(std::string s) {
int n = s.size();
std::vector<int> z(n + 1);
z[0] = n;
for (int i = 1, j = 1; i < n; i++) {
z[i] = std::max(0, std::min(j + z[j] - i, z[i - j]));
while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
z[i]++;
}
if (i + z[i] > j + z[j]) {
j = i;
}
}
return z;
}
SAM
struct SAM {
static constexpr int ALPHABET_SIZE = 26;
struct Node {
int len;
int link;
std::array<int, ALPHABET_SIZE> next;
Node() : len{}, link{}, next{} {}
};
std::vector<Node> t;
SAM() {
init();
}
void init() {
t.assign(2, Node());
t[0].next.fill(1);
t[0].len = -1;
}
int newNode() {
t.emplace_back();
return t.size() - 1;
}
int extend(int p, int c) {
if (t[p].next[c]) {
int q = t[p].next[c];
if (t[q].len == t[p].len + 1) {
return q;
}
int r = newNode();
t[r].len = t[p].len + 1;
t[r].link = t[q].link;
t[r].next = t[q].next;
t[q].link = r;
while (t[p].next[c] == q) {
t[p].next[c] = r;
p = t[p].link;
}
return r;
}
int cur = newNode();
t[cur].len = t[p].len + 1;
while (!t[p].next[c]) {
t[p].next[c] = cur;
p = t[p].link;
}
t[cur].link = extend(p, c);
return cur;
}
};
AC自动机【久远】
constexpr int N = 3e5 + 30, A = 26;
struct Node {
int fail;
int sum;
int next[A];
Node() : fail(-1), sum(0) {
std::memset(next, -1, sizeof(next));
}
} node[N];
int cnt = 0;
int bin[N];
int nBin = 0;
int newNode() {
int p = nBin > 0 ? bin[--nBin] : cnt++;
node[p] = Node();
return p;
}
struct AC {
std::vector<int> x;
AC(AC &&a) : x(std::move(a.x)) {}
AC(std::vector<std::string> s, std::vector<int> w) {
x = {newNode(), newNode()};
std::fill(node[x[0]].next, node[x[0]].next + A, x[1]);
node[x[1]].fail = x[0];
for (int i = 0; i < int(s.size()); i++) {
int p = x[1];
for (int j = 0; j < int(s[i].length()); j++) {
int c = s[i][j] - 'a';
if (node[p].next[c] == -1) {
int u = newNode();
x.push_back(u);
node[p].next[c] = u;
}
p = node[p].next[c];
}
node[p].sum += w[i];
}
std::queue<int> que;
que.push(x[1]);
while (!que.empty()) {
int u = que.front();
que.pop();
node[u].sum += node[node[u].fail].sum;
for (int c = 0; c < A; c++) {
if (node[u].next[c] == -1) {
node[u].next[c] = node[node[u].fail].next[c];
} else {
node[node[u].next[c]].fail = node[node[u].fail].next[c];
que.push(node[u].next[c]);
}
}
}
}
~AC() {
for (auto p : x) {
bin[nBin++] = p;
}
}
i64 query(const std::string &s) const {
i64 ans = 0;
int p = x[1];
for (int i = 0; i < int(s.length()); i++) {
int c = s[i] - 'a';
p = node[p].next[c];
ans += node[p].sum;
}
return ans;
}
};
标签:std,vector,return,int,rhs,算法,jiangly,const,模板
From: https://www.cnblogs.com/WIDA/p/17633758.html