首页 > 编程语言 >HashMap 源码分析

HashMap 源码分析

时间:2023-08-30 19:44:31浏览次数:61  
标签:分析 map hash HashMap value 源码 key null

HashMap 简介

HashMap 主要用来存放键值对,它基于哈希表的 Map 接口实现,是常用的 Java 集合之一,是非线程安全的。

HashMap 可以存储 null 的 key 和 value,但 null 作为键只能有一个,null 作为值可以有多个

JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突)。 JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于等于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。

HashMap 默认的初始化大小为 16。之后每次扩充,容量变为原来的 2 倍。并且, HashMap 总是使用 2 的幂作为哈希表的大小。

底层数据结构分析

JDK1.8 之前

JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列

HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。

所谓扰动函数指的就是 HashMap 的 hash 方法。使用 hash 方法也就是扰动函数是为了防止一些实现比较差的 hashCode() 方法 换句话说使用扰动函数之后可以减少碰撞。

JDK 1.8 HashMap 的 hash 方法源码:

JDK 1.8 的 hash 方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。

static final int hash(Object key) {
    int h;
    // key.hashCode():返回散列值也就是hashcode
    // ^:按位异或
    // >>>:无符号右移,忽略符号位,空位都以0补齐
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

对比一下 JDK1.7 的 HashMap 的 hash 方法源码.

static int hash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).

    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。

所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

DK1.8 之后

相比于之前的版本,JDK1.8 以后在解决哈希冲突时有了较大的变化。

当链表长度大于阈值(默认为 8)时,会首先调用 treeifyBin()方法。这个方法会根据 HashMap 数组来决定是否转换为红黑树。只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是执行 resize() 方法对数组扩容。相关源码这里就不贴了,重点关注 treeifyBin()方法即可!

类的属性:

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
    // 序列号
    private static final long serialVersionUID = 362498820763181265L;
    // 默认的初始容量是16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    // 最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30;
    // 默认的负载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    // 当桶(bucket)上的结点数大于等于这个值时会转成红黑树
    static final int TREEIFY_THRESHOLD = 8;
    // 当桶(bucket)上的结点数小于等于这个值时树转链表
    static final int UNTREEIFY_THRESHOLD = 6;
    // 桶中结构转化为红黑树对应的table的最小容量
    static final int MIN_TREEIFY_CAPACITY = 64;
    // 存储元素的数组,总是2的幂次倍
    transient Node<k,v>[] table;
    // 存放具体元素的集
    transient Set<map.entry<k,v>> entrySet;
    // 存放元素的个数,注意这个不等于数组的长度。
    transient int size;
    // 每次扩容和更改map结构的计数器
    transient int modCount;
    // 阈值(容量*负载因子) 当实际大小超过阈值时,会进行扩容
    int threshold;
    // 负载因子
    final float loadFactor;
}
  • loadFactor 负载因子

    loadFactor 负载因子是控制数组存放数据的疏密程度,loadFactor 越趋近于 1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,loadFactor 越小,也就是趋近于 0,数组中存放的数据(entry)也就越少,也就越稀疏。

    loadFactor 太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor 的默认值为 0.75f 是官方给出的一个比较好的临界值

    给定的默认容量为 16,负载因子为 0.75。Map 在使用过程中不断的往里面存放数据,当数量超过了 16 * 0.75 = 12 就需要将当前 16 的容量进行扩容,而扩容这个过程涉及到 rehash、复制数据等操作,所以非常消耗性能。

  • threshold

    threshold = capacity * loadFactor当 size>threshold的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准

Node 节点类源码:

Node节点是链表实际存储数据的节点

// 继承自 Map.Entry<K,V>
static class Node<K,V> implements Map.Entry<K,V> {
       final int hash;// 哈希值,存放元素到hashmap中时用来与其他元素hash值比较
       final K key;//键
       V value;//值
       // 指向下一个节点
       Node<K,V> next;
       Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }
        // 重写hashCode()方法
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
        // 重写 equals() 方法
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
}

树节点类源码:

TreeNode节点是红黑树实际存储数据的节点

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // 父
        TreeNode<K,V> left;    // 左
        TreeNode<K,V> right;   // 右
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;           // 判断颜色
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
        // 返回根节点
        final TreeNode<K,V> root() {
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
       }
}

HashMap 源码分析

构造方法

HashMap 中有四个构造方法,它们分别如下:

    // 默认构造函数。
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all   other fields defaulted
     }

     // 包含另一个“Map”的构造函数
     public HashMap(Map<? extends K, ? extends V> m) {
         this.loadFactor = DEFAULT_LOAD_FACTOR;
         putMapEntries(m, false);//下面会分析到这个方法
     }

     // 指定“容量大小”的构造函数
     public HashMap(int initialCapacity) {
         this(initialCapacity, DEFAULT_LOAD_FACTOR);
     }

     // 指定“容量大小”和“负载因子”的构造函数
     public HashMap(int initialCapacity, float loadFactor) {
         if (initialCapacity < 0)
             throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
         if (initialCapacity > MAXIMUM_CAPACITY)
             initialCapacity = MAXIMUM_CAPACITY;
         if (loadFactor <= 0 || Float.isNaN(loadFactor))
             throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
         this.loadFactor = loadFactor;
         // 初始容量暂时存放到 threshold ,在resize中再赋值给 newCap 进行table初始化
         this.threshold = tableSizeFor(initialCapacity);
     }

值得注意的是上述四个构造方法中,都初始化了负载因子 loadFactor,由于HashMap中没有 capacity 这样的字段,即使指定了初始化容量 initialCapacity ,也只是通过 tableSizeFor 将其扩容到与 initialCapacity 最接近的2的幂次方大小,然后暂时赋值给 threshold ,后续通过 resize 方法将 threshold 赋值给 newCap 进行 table 的初始化。

putMapEntries 方法:

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    int s = m.size();
    if (s > 0) {
        // 判断table是否已经初始化
        if (table == null) { // pre-size
            /*
             * 未初始化,s为m的实际元素个数,ft=s/loadFactor => s=ft*loadFactor, 跟我们前面提到的
             * 阈值=容量*负载因子 是不是很像,是的,ft指的是要添加s个元素所需的最小的容量
             */
            float ft = ((float)s / loadFactor) + 1.0F;
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                    (int)ft : MAXIMUM_CAPACITY);
            /*
             * 根据构造函数可知,table未初始化,threshold实际上是存放的初始化容量,如果添加s个元素所
             * 需的最小容量大于初始化容量,则将最小容量扩容为最接近的2的幂次方大小作为初始化。
             * 注意这里不是初始化阈值
             */
            if (t > threshold)
                threshold = tableSizeFor(t);
        }
        // 已初始化,并且m元素个数大于阈值,进行扩容处理
        else if (s > threshold)
            resize();
        // 将m中的所有元素添加至HashMap中,如果table未初始化,putVal中会调用resize初始化或扩容
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}

put方法

HashMap 只提供了 put 用于添加元素,putVal 方法只是给 put 方法调用的一个方法,并没有提供给用户使用。

对 putVal 方法添加元素的分析如下:

  1. 如果定位到的数组位置没有元素 就直接插入。
  2. 如果定位到的数组位置有元素就和要插入的 key 比较,如果 key 相同就直接覆盖,如果 key 不相同,就判断 p 是否是一个树节点,如果是就调用e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value)将元素添加进入。如果不是就遍历链表插入(插入的是链表尾部)。

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // table未初始化或者长度为0,进行扩容
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 桶中已经存在元素(处理hash冲突)
    else {
        Node<K,V> e; K k;
        //快速判断第一个节点table[i]的key是否与插入的key一样,若相同就直接使用插入的值p替换掉旧的值e。
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
        // 判断插入的是否是红黑树节点
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 不是红黑树节点则说明为链表结点
        else {
            // 在链表最末插入结点
            for (int binCount = 0; ; ++binCount) {
                // 到达链表的尾部
                if ((e = p.next) == null) {
                    // 在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 结点数量达到阈值(默认为 8 ),执行 treeifyBin 方法
                    // 这个方法会根据 HashMap 数组来决定是否转换为红黑树。
                    // 只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是对数组扩容。
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    // 跳出循环
                    break;
                }
                // 判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等,跳出循环
                    break;
                // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                p = e;
            }
        }
        // 表示在桶中找到key值、hash值与插入元素相等的结点
        if (e != null) {
            // 记录e的value
            V oldValue = e.value;
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)
                //用新值替换旧值
                e.value = value;
            // 访问后回调
            afterNodeAccess(e);
            // 返回旧值
            return oldValue;
        }
    }
    // 结构性修改
    ++modCount;
    // 实际大小大于阈值则扩容
    if (++size > threshold)
        resize();
    // 插入后回调
    afterNodeInsertion(evict);
    return null;
}

再来对比一下 JDK1.7 put 方法的代码

对于 put 方法的分析如下:

  1. 如果定位到的数组位置没有元素 就直接插入
  2. 如果定位到的数组位置有元素,遍历以这个元素为头结点的链表,依次和插入的 key 比较,如果 key 相同就直接覆盖,不同就采用头插法插入元素。
public V put(K key, V value)
    if (table == EMPTY_TABLE) {
    inflateTable(threshold);
}
    if (key == null)
        return putForNullKey(value);
    int hash = hash(key);
    int i = indexFor(hash, table.length);
    for (Entry<K,V> e = table[i]; e != null; e = e.next) { // 先遍历
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }
    modCount++;
    addEntry(hash, key, value, i);  // 再插入
    return null;
}

get方法

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 数组元素相等
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 桶中不止一个节点
        if ((e = first.next) != null) {
            // 在树中get
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 在链表中get
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

resize方法

进行扩容,会伴随着一次重新 hash 分配,并且会遍历 hash 表中所有的元素,是非常耗时的。在编写程序中,要尽量避免 resize。resize方法实际上是将 table 初始化和 table 扩容 进行了整合,底层的行为都是给 table 赋值一个新的数组。

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 超过最大值就不再扩充了,就只好随你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 没超过最大值,就扩充为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        // 创建对象时初始化容量大小放在threshold中,此时只需要将其作为新的数组容量
        newCap = oldThr;
    else {
        // signifies using defaults 无参构造函数创建的对象在这里计算容量和阈值
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        // 创建时指定了初始化容量或者负载因子,在这里进行阈值初始化,
    	// 或者扩容前的旧容量小于16,在这里计算新的resize上限
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    // 只有一个节点,直接计算元素新的位置即可
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    // 将红黑树拆分成2棵子树,如果子树节点数小于等于 UNTREEIFY_THRESHOLD(默认为 6),则将子树转换为链表。
                    // 如果子树节点数大于 UNTREEIFY_THRESHOLD,则保持子树的树结构。
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else {
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引+oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

HashMap 常用方法测试

public class Demo01 {
    public static void main(String[] args) {
        // 创建集合需要指定初始容量大小
        HashMap<String, String> map = new HashMap<>(16);
        // 键不能重复,值可以重复
        map.put("san", "张三");
        map.put("si", "李四");
        map.put("wu", "王五");
        map.put("wang", "老王");
        // 老王被覆盖
        map.put("wang", "老王2");
        map.put("lao", "老王");
        System.out.println("-------直接输出hashmap:-------");
        System.out.println(map);
        /**
         * 遍历HashMap
         */
        // 1.获取Map中的所有键
        System.out.println("-------foreach获取Map中所有的键:------");
        Set<String> keys = map.keySet();
        for (String key : keys) {
            System.out.print(key+"  ");
        }
        System.out.println();//换行
        // 2.获取Map中所有值
        System.out.println("-------foreach获取Map中所有的值:------");
        Collection<String> values = map.values();
        for (String value : values) {
            System.out.print(value+"  ");
        }
        System.out.println();//换行
        // 3.得到key的值的同时得到key所对应的值
        System.out.println("-------得到key的值的同时得到key所对应的值:-------");
        Set<String> keys2 = map.keySet();
        for (String key : keys2) {
            System.out.print(key + ":" + map.get(key)+"   ");

        }
        /**
         * 如果既要遍历key又要value,那么建议这种方式,因为如果先获取keySet然后再执行map.get(key),map内部会执行两次遍历。
         * 一次是在获取keySet的时候,一次是在遍历所有key的时候。
         */
        // 当我调用put(key,value)方法的时候,首先会把key和value封装到
        // Entry这个静态内部类对象中,把Entry对象再添加到数组中,所以我们想获取
        // map中的所有键值对,我们只要获取数组中的所有Entry对象,接下来
        // 调用Entry对象中的getKey()和getValue()方法就能获取键值对了
        Set<java.util.Map.Entry<String, String>> entrys = map.entrySet();
        for (java.util.Map.Entry<String, String> entry : entrys) {
            System.out.println(entry.getKey() + "--" + entry.getValue());
        }

        /**
         * HashMap其他常用方法
         */
        System.out.println("after map.size():"+map.size());
        System.out.println("after map.isEmpty():"+map.isEmpty());
        System.out.println(map.remove("san"));
        System.out.println("after map.remove():"+map);
        System.out.println("after map.get(si):"+map.get("si"));
        System.out.println("after map.containsKey(si):"+map.containsKey("si"));
        System.out.println("after containsValue(李四):"+map.containsValue("李四"));
        System.out.println(map.replace("si", "李四2"));
        System.out.println("after map.replace(si, 李四2):"+map);

    }
}

来源:https://javaguide.cn/java/collection/hashmap-source-code.html

标签:分析,map,hash,HashMap,value,源码,key,null
From: https://www.cnblogs.com/moliyy/p/17668123.html

相关文章

  • 新增!视频智能分析/AI算法智能分析网关V5告警功能添加教程来咯!
    智能分析网关系列是基于边缘AI计算技术,可对前端摄像头采集的视频流进行实时检测分析,能对监控画面中的人、车、物进行识别,可实现的检测包括:人脸检测与识别、车辆检测与识别、烟火识别、安全帽/反光衣识别、区域入侵识别等,支持对检测到的异常进行实时告警、抓拍、推送。近期,智能分析......
  • [内核源码] epoll 实现原理
    https://wenfh2020.com/2020/04/23/epoll-code/文章主要对tcp通信进行epoll源码走读。Linux源码:Linux5.7版本。epoll核心源码:eventpoll.h/eventpoll.c。搭建epoll内核调试环境视频:vscode+gdb远程调试linux(EPOLL)内核源码1.应用场景2.预备知识3.使......
  • flask之cbv源码分析,模板,请求与响应,session和源码分析,闪现,请求扩展
    目录1cbv分析1.1源码分析2模板2.1py2.2html3请求与响应4session及源码分析4.1session的使用4.2源码分析4.3session执行原理5闪现6请求扩展1cbv分析#基于类的视图,写法fromflaskimportFlask,requestfromflask.viewsimportView,MethodViewapp=Flask(__......
  • R语言GARCH族模型:正态分布、t、GED分布EGARCH、TGARCH的VaR分析股票指数|附代码数据
    全文链接:http://tecdat.cn/?p=31023最近我们被客户要求撰写关于GARCH族模型的研究报告,包括一些图形和统计输出。如何构建合适的模型以恰当的方法对风险进行测量是当前金融研究领域的一个热门话题 ( 点击文末“阅读原文”获取完整代码数据******** )。VaR方法作为当前业内比较......
  • matlab用马尔可夫链蒙特卡罗 (MCMC) 的Logistic逻辑回归模型分析汽车实验数据|附代码
    原文链接:http://tecdat.cn/?p=24103此示例说明如何使用逻辑回归模型进行贝叶斯推断 ( 点击文末“阅读原文”获取完整代码数据 )。统计推断通常基于最大似然估计(MLE)。MLE选择能够使数据似然最大化的参数,是一种较为自然的方法。在MLE中,假定参数是未知但固定的数值,并在一定......
  • peewee update和save性能分析
    背景python项目中使用了peewee这款orm框架,在对数据库更新时有两种语法,分别是save和update方法。有同事说从peewee的日志来看,update比save更快,于是做了一个简单的比较实验,看看真实情况如何。基础环境:python:3.8.10peewee:3.16.2数据库:sqlite准备插入1w条数据importdate......
  • restful规范和django源码写接口
    一、restful规范1、restful规范是什么,如何来的?一种定义WebAPI接口的设计风格,尤其适用于前后端分离的应用模式中的规范RoyFielding的博士论文提出的2、以后写接口,大致都要遵循如下规范-1数据的安全保障-》url链接一般都采用https协议进行传输--》它比http安全......
  • bigkey分析
    redis集群中存在bigkey问题概述redis集群环境查询较慢,内存使用不均匀,为了避免影响业务,我们运维这边做了集群状态的分析,排查后发现,ping丢包、延时及redis日志均无异常,redis集群并未切换,但是慢日志中存在部分key值查询较为耗时,结合redis日常使用情况,我们决定对该集群做bigkey分析。问......
  • 信息化热词分析python
    环境准备#安装requests库pipinstallrequests#安装bs4库pipinstallbs4#安装jieba库pipinstalljieba#安装selenium库pipinstallselenium#安装lxml库pipinstalllxml#安装matplotlib库pipinstallmatplotlib#安装numpy库pipinstallnumpy#安装Pill......
  • AcWing - 闫氏DP分析法
    核心思想:从集合角度来分析DP问题在我们遇到的DP问题中,一般都是求在一个有限集内的最值,但是这些方案数量一般都是指数级别的,想要一个一个查找出来不太可能。所以DP方法是用来优化这种寻找最优方案的过程的。DP问题一般来说分析时都要经过两个阶段:状态表示(化零为整):指把一些具有......