18.说一下你对Java内存模型(JMM)的理解?
Java内存模型(Java Memory Model,JMM),是一种抽象的模型,被定义出来屏蔽各种硬件和操作系统的内存访问差异。
JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存
(Main Memory)中,每个线程都有一个私有的本地内存
(Local Memory),本地内存中存储了该线程以读/写共享变量的副本。
Java内存模型的抽象图:
Java内存模型
本地内存是JMM的 一个抽象概念,并不真实存在。它其实涵盖了缓存、写缓冲区、寄存器以及其他的硬件和编译器优化。
实际线程工作模型
图里面的是一个双核 CPU 系统架构 ,每个核有自己的控制器和运算器,其中控制器包含一组寄存器和操作控制器,运算器执行算术逻辅运算。每个核都有自己的一级缓存,在有些架构里面还有一个所有 CPU 共享的二级缓存。 那么 Java 内存模型里面的工作内存,就对应这里的 Ll 缓存或者 L2 缓存或者 CPU 寄存器。
19.说说你对原子性、可见性、有序性的理解?
原子性、有序性、可见性是并发编程中非常重要的基础概念,JMM的很多技术都是围绕着这三大特性展开。
- 原子性:原子性指的是一个操作是不可分割、不可中断的,要么全部执行并且执行的过程不会被任何因素打断,要么就全不执行。
- 可见性:可见性指的是一个线程修改了某一个共享变量的值时,其它线程能够立即知道这个修改。
- 有序性:有序性指的是对于一个线程的执行代码,从前往后依次执行,单线程下可以认为程序是有序的,但是并发时有可能会发生指令重排。
分析下面几行代码的原子性?
int i = 2;
int j = i;
i++;
i = i + 1;
- 第1句是基本类型赋值,是原子性操作。
- 第2句先读i的值,再赋值到j,两步操作,不能保证原子性。
- 第3和第4句其实是等效的,先读取i的值,再+1,最后赋值到i,三步操作了,不能保证原子性。
原子性、可见性、有序性都应该怎么保证呢?
- 原子性:JMM只能保证基本的原子性,如果要保证一个代码块的原子性,需要使用
synchronized
。 - 可见性:Java是利用
volatile
关键字来保证可见性的,除此之外,final
和synchronized
也能保证可见性。 - 有序性:
synchronized
或者volatile
都可以保证多线程之间操作的有序性。
20.那说说什么是指令重排?
在执行程序时,为了提高性能,编译器和处理器常常会对指令做重排序。重排序分3种类型。
- 编译器优化的重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。
- 指令级并行的重排序。现代处理器采用了指令级并行技术(Instruction-Level Parallelism,ILP)来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应 机器指令的执行顺序。
- 内存系统的重排序。由于处理器使用缓存和读/写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。
从Java源代码到最终实际执行的指令序列,会分别经历下面3种重排序,如图:
多级指令重排
我们比较熟悉的双重校验单例模式就是一个经典的指令重排的例子,Singleton instance=new Singleton();
对应的JVM指令分为三步:分配内存空间-->初始化对象--->对象指向分配的内存空间,但是经过了编译器的指令重排序,第二步和第三步就可能会重排序。
双重校验单例模式异常情形
JMM属于语言级的内存模型,它确保在不同的编译器和不同的处理器平台之上,通过禁止特定类型的编译器重排序和处理器重排序,为程序员提供一致的内存可见性保证。
21.指令重排有限制吗?happens-before了解吗?
指令重排也是有一些限制的,有两个规则happens-before
和as-if-serial
来约束。
happens-before的定义:
- 如果一个操作happens-before另一个操作,那么第一个操作的执行结果将对第二个操作可见,而且第一个操作的执行顺序排在第二个操作之前。
- 两个操作之间存在happens-before关系,并不意味着Java平台的具体实现必须要按照 happens-before关系指定的顺序来执行。如果重排序之后的执行结果,与按happens-before关系来执行的结果一致,那么这种重排序并不非法
happens-before和我们息息相关的有六大规则:
happens-before六大规则
- 程序顺序规则:一个线程中的每个操作,happens-before于该线程中的任意后续操作。
- 监视器锁规则:对一个锁的解锁,happens-before于随后对这个锁的加锁。
- volatile变量规则:对一个volatile域的写,happens-before于任意后续对这个volatile域的读。
- 传递性:如果A happens-before B,且B happens-before C,那么A happens-before C。
- start()规则:如果线程A执行操作ThreadB.start()(启动线程B),那么A线程的 ThreadB.start()操作happens-before于线程B中的任意操作。
- join()规则:如果线程A执行操作ThreadB.join()并成功返回,那么线程B中的任意操作 happens-before于线程A从ThreadB.join()操作成功返回。
22.as-if-serial又是什么?单线程的程序一定是顺序的吗?
as-if-serial语义的意思是:不管怎么重排序(编译器和处理器为了提高并行度),单线程程序的执行结果不能被改变。编译器、runtime和处理器都必须遵守as-if-serial语义。
为了遵守as-if-serial语义,编译器和处理器不会对存在数据依赖关系的操作做重排序,因为这种重排序会改变执行结果。但是,如果操作之间不存在数据依赖关系,这些操作就可能被编译器和处理器重排序。为了具体说明,请看下面计算圆面积的代码示例。
double pi = 3.14; // A
double r = 1.0; // B
double area = pi * r * r; // C
上面3个操作的数据依赖关系:
A和C之间存在数据依赖关系,同时B和C之间也存在数据依赖关系。因此在最终执行的指令序列中,C不能被重排序到A和B的前面(C排到A和B的前面,程序的结果将会被改变)。但A和B之间没有数据依赖关系,编译器和处理器可以重排序A和B之间的执行顺序。
所以最终,程序可能会有两种执行顺序:
两种执行结果
as-if-serial语义把单线程程序保护了起来,遵守as-if-serial语义的编译器、runtime和处理器共同编织了这么一个“楚门的世界”:单线程程序是按程序的“顺序”来执行的。as- if-serial语义使单线程情况下,我们不需要担心重排序的问题,可见性的问题。
23.volatile实现原理了解吗?
volatile有两个作用,保证可见性和有序性。
volatile怎么保证可见性的呢?
相比synchronized的加锁方式来解决共享变量的内存可见性问题,volatile就是更轻量的选择,它没有上下文切换的额外开销成本。
volatile可以确保对某个变量的更新对其他线程马上可见,一个变量被声明为volatile 时,线程在写入变量时不会把值缓存在寄存器或者其他地方,而是会把值刷新回主内存 当其它线程读取该共享变量 ,会从主内存重新获取最新值,而不是使用当前线程的本地内存中的值。
例如,我们声明一个 volatile 变量 volatile int x = 0,线程A修改x=1,修改完之后就会把新的值刷新回主内存,线程B读取x的时候,就会清空本地内存变量,然后再从主内存获取最新值。
volatile内存可见性
volatile怎么保证有序性的呢?
重排序可以分为编译器重排序和处理器重排序,valatile保证有序性,就是通过分别限制这两种类型的重排序。
volatile重排序规则表
为了实现volatile的内存语义,编译器在生成字节码时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。
- 在每个volatile写操作的前面插入一个
StoreStore
屏障 - 在每个volatile写操作的后面插入一个
StoreLoad
屏障 - 在每个volatile读操作的后面插入一个
LoadLoad
屏障 - 在每个volatile读操作的后面插入一个
LoadStore
屏障
volatile写插入内存屏障后生成的指令序列示意图
volatile写插入内存屏障后生成的指令序列示意图
锁
24.synchronized用过吗?怎么使用?
synchronized经常用的,用来保证代码的原子性。
synchronized主要有三种用法:
- 修饰实例方法: 作用于当前对象实例加锁,进入同步代码前要获得 当前对象实例的锁
synchronized void method() {
//业务代码
}
-
修饰静态方法:也就是给当前类加锁,会作⽤于类的所有对象实例 ,进⼊同步代码前要获得当前 class 的锁。因为静态成员不属于任何⼀个实例对象,是类成员( static 表明这是该类的⼀个静态资源,不管 new 了多少个对象,只有⼀份)。
如果⼀个线程 A 调⽤⼀个实例对象的⾮静态 synchronized ⽅法,⽽线程 B 需要调⽤这个实例对象所属类的静态 synchronized ⽅法,是允许的,不会发⽣互斥现象,因为访问静态 synchronized ⽅法占⽤的锁是当前类的锁,⽽访问⾮静态 synchronized ⽅法占⽤的锁是当前实例对象锁。
synchronized void staic method() {
//业务代码
}
- 修饰代码块 :指定加锁对象,对给定对象/类加锁。 synchronized(this|object) 表示进⼊同步代码库前要获得给定对象的锁。 synchronized(类.class) 表示进⼊同步代码前要获得 当前 class 的锁
synchronized(this) {
//业务代码
}
25.synchronized的实现原理?
synchronized是怎么加锁的呢?
我们使用synchronized的时候,发现不用自己去lock和unlock,是因为JVM帮我们把这个事情做了。
-
synchronized修饰代码块时,JVM采用
monitorenter
、monitorexit
两个指令来实现同步,monitorenter
指令指向同步代码块的开始位置,monitorexit
指令则指向同步代码块的结束位置。反编译一段synchronized修饰代码块代码,
javap -c -s -v -l SynchronizedDemo.class
,可以看到相应的字节码指令。
monitorenter和monitorexit
- synchronized修饰同步方法时,JVM采用
ACC_SYNCHRONIZED
标记符来实现同步,这个标识指明了该方法是一个同步方法。
同样可以写段代码反编译看一下。
synchronized修饰同步方法
synchronized锁住的是什么呢?
monitorenter、monitorexit或者ACC_SYNCHRONIZED都是基于Monitor实现的。
实例对象结构里有对象头,对象头里面有一块结构叫Mark Word,Mark Word指针指向了monitor。
所谓的Monitor其实是一种同步工具,也可以说是一种同步机制。在Java虚拟机(HotSpot)中,Monitor是由ObjectMonitor实现的,可以叫做内部锁,或者Monitor锁。
ObjectMonitor的工作原理:
- ObjectMonitor有两个队列:_WaitSet、_EntryList,用来保存ObjectWaiter 对象列表。
- _owner,获取 Monitor 对象的线程进入 _owner 区时, _count + 1。如果线程调用了 wait() 方法,此时会释放 Monitor 对象, _owner 恢复为空, _count - 1。同时该等待线程进入 _WaitSet 中,等待被唤醒。
ObjectMonitor() {
_header = NULL;
_count = 0; // 记录线程获取锁的次数
_waiters = 0,
_recursions = 0; //锁的重入次数
_object = NULL;
_owner = NULL; // 指向持有ObjectMonitor对象的线程
_WaitSet = NULL; // 处于wait状态的线程,会被加入到_WaitSet
_WaitSetLock = 0 ;
_Responsible = NULL ;
_succ = NULL ;
_cxq = NULL ;
FreeNext = NULL ;
_EntryList = NULL ; // 处于等待锁block状态的线程,会被加入到该列表
_SpinFreq = 0 ;
_SpinClock = 0 ;
OwnerIsThread = 0 ;
}
可以类比一个去医院就诊的例子[18]:
-
首先,患者在门诊大厅前台或自助挂号机进行挂号;
-
随后,挂号结束后患者找到对应的诊室就诊:
- 诊室每次只能有一个患者就诊;
- 如果此时诊室空闲,直接进入就诊;
- 如果此时诊室内有其它患者就诊,那么当前患者进入候诊室,等待叫号;
-
就诊结束后,走出就诊室,候诊室的下一位候诊患者进入就诊室。
就诊-图片来源参考[18]
这个过程就和Monitor机制比较相似:
- 门诊大厅:所有待进入的线程都必须先在入口Entry Set挂号才有资格;
- 就诊室:就诊室**_Owner**里里只能有一个线程就诊,就诊完线程就自行离开
- 候诊室:就诊室繁忙时,进入等待区(Wait Set),就诊室空闲的时候就从**等待区(Wait Set)**叫新的线程
Java Montior机制
所以我们就知道了,同步是锁住的什么东西:
- monitorenter,在判断拥有同步标识 ACC_SYNCHRONIZED 抢先进入此方法的线程会优先拥有 Monitor 的 owner ,此时计数器 +1。
- monitorexit,当执行完退出后,计数器 -1,归 0 后被其他进入的线程获得。
26.除了原子性,synchronized可见性,有序性,可重入性怎么实现?
synchronized怎么保证可见性?
- 线程加锁前,将清空工作内存中共享变量的值,从而使用共享变量时需要从主内存中重新读取最新的值。
- 线程加锁后,其它线程无法获取主内存中的共享变量。
- 线程解锁前,必须把共享变量的最新值刷新到主内存中。
synchronized怎么保证有序性?
synchronized同步的代码块,具有排他性,一次只能被一个线程拥有,所以synchronized保证同一时刻,代码是单线程执行的。
因为as-if-serial语义的存在,单线程的程序能保证最终结果是有序的,但是不保证不会指令重排。
所以synchronized保证的有序是执行结果的有序性,而不是防止指令重排的有序性。
synchronized怎么实现可重入的呢?
synchronized 是可重入锁,也就是说,允许一个线程二次请求自己持有对象锁的临界资源,这种情况称为可重入锁。
synchronized 锁对象的时候有个计数器,他会记录下线程获取锁的次数,在执行完对应的代码块之后,计数器就会-1,直到计数器清零,就释放锁了。
之所以,是可重入的。是因为 synchronized 锁对象有个计数器,会随着线程获取锁后 +1 计数,当线程执行完毕后 -1,直到清零释放锁。
27.锁升级?synchronized优化了解吗?
了解锁升级,得先知道,不同锁的状态是什么样的。这个状态指的是什么呢?
Java对象头里,有一块结构,叫Mark Word
标记字段,这块结构会随着锁的状态变化而变化。
64 位虚拟机 Mark Word 是 64bit,我们来看看它的状态变化:
Mark Word变化
Mark Word存储对象自身的运行数据,如哈希码、GC分代年龄、锁状态标志、偏向时间戳(Epoch) 等。
synchronized做了哪些优化?
在JDK1.6之前,synchronized的实现直接调用ObjectMonitor的enter和exit,这种锁被称之为重量级锁。从JDK6开始,HotSpot虚拟机开发团队对Java中的锁进行优化,如增加了适应性自旋、锁消除、锁粗化、轻量级锁和偏向锁等优化策略,提升了synchronized的性能。
-
偏向锁:在无竞争的情况下,只是在Mark Word里存储当前线程指针,CAS操作都不做。
-
轻量级锁:在没有多线程竞争时,相对重量级锁,减少操作系统互斥量带来的性能消耗。但是,如果存在锁竞争,除了互斥量本身开销,还额外有CAS操作的开销。
-
自旋锁:减少不必要的CPU上下文切换。在轻量级锁升级为重量级锁时,就使用了自旋加锁的方式
-
锁粗化:将多个连续的加锁、解锁操作连接在一起,扩展成一个范围更大的锁。
-
锁消除:虚拟机即时编译器在运行时,对一些代码上要求同步,但是被检测到不可能存在共享数据竞争的锁进行消除。
锁升级的过程是什么样的?
锁升级方向:无锁-->偏向锁---> 轻量级锁---->重量级锁,这个方向基本上是不可逆的。
锁升级方向
我们看一下升级的过程:
偏向锁:
偏向锁的获取:
- 判断是否为可偏向状态--MarkWord中锁标志是否为‘01’,是否偏向锁是否为‘1’
- 如果是可偏向状态,则查看线程ID是否为当前线程,如果是,则进入步骤'5',否则进入步骤‘3’
- 通过CAS操作竞争锁,如果竞争成功,则将MarkWord中线程ID设置为当前线程ID,然后执行‘5’;竞争失败,则执行‘4’
- CAS获取偏向锁失败表示有竞争。当达到safepoint时获得偏向锁的线程被挂起,偏向锁升级为轻量级锁,然后被阻塞在安全点的线程继续往下执行同步代码块
- 执行同步代码
偏向锁的撤销:
- 偏向锁不会主动释放(撤销),只有遇到其他线程竞争时才会执行撤销,由于撤销需要知道当前持有该偏向锁的线程栈状态,因此要等到safepoint时执行,此时持有该偏向锁的线程(T)有‘2’,‘3’两种情况;
- 撤销----T线程已经退出同步代码块,或者已经不再存活,则直接撤销偏向锁,变成无锁状态----该状态达到阈值20则执行批量重偏向
- 升级----T线程还在同步代码块中,则将T线程的偏向锁升级为轻量级锁,当前线程执行轻量级锁状态下的锁获取步骤----该状态达到阈值40则执行批量撤销
轻量级锁:
轻量级锁的获取:
- 进行加锁操作时,jvm会判断是否已经时重量级锁,如果不是,则会在当前线程栈帧中划出一块空间,作为该锁的锁记录,并且将锁对象MarkWord复制到该锁记录中
- 复制成功之后,jvm使用CAS操作将对象头MarkWord更新为指向锁记录的指针,并将锁记录里的owner指针指向对象头的MarkWord。如果成功,则执行‘3’,否则执行‘4’
- 更新成功,则当前线程持有该对象锁,并且对象MarkWord锁标志设置为‘00’,即表示此对象处于轻量级锁状态
- 更新失败,jvm先检查对象MarkWord是否指向当前线程栈帧中的锁记录,如果是则执行‘5’,否则执行‘4’
- 表示锁重入;然后当前线程栈帧中增加一个锁记录第一部分(Displaced Mark Word)为null,并指向Mark Word的锁对象,起到一个重入计数器的作用。
- 表示该锁对象已经被其他线程抢占,则进行自旋等待(默认10次),等待次数达到阈值仍未获取到锁,则升级为重量级锁
大体上省简的升级过程:
锁升级简略过程
完整的升级过程:
synchronized 锁升级过程-来源参考[14]28.说说synchronized和ReentrantLock的区别?
可以从锁的实现、功能特点、性能等几个维度去回答这个问题:
- 锁的实现: synchronized是Java语言的关键字,基于JVM实现。而ReentrantLock是基于JDK的API层面实现的(一般是lock()和unlock()方法配合try/finally 语句块来完成。)
- 性能: 在JDK1.6锁优化以前,synchronized的性能比ReenTrantLock差很多。但是JDK6开始,增加了适应性自旋、锁消除等,两者性能就差不多了。
- 功能特点: ReentrantLock 比 synchronized 增加了一些高级功能,如等待可中断、可实现公平锁、可实现选择性通知。
- ReentrantLock提供了一种能够中断等待锁的线程的机制,通过lock.lockInterruptibly()来实现这个机制
- ReentrantLock可以指定是公平锁还是非公平锁。而synchronized只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。
- synchronized与wait()和notify()/notifyAll()方法结合实现等待/通知机制,ReentrantLock类借助Condition接口与newCondition()方法实现。
- ReentrantLock需要手工声明来加锁和释放锁,一般跟finally配合释放锁。而synchronized不用手动释放锁。
下面的表格列出出了两种锁之间的区别:
synchronized和ReentrantLock的区别
29.AQS了解多少?
AbstractQueuedSynchronizer 抽象同步队列,简称 AQS ,它是Java并发包的根基,并发包中的锁就是基于AQS实现的。
- AQS是基于一个FIFO的双向队列,其内部定义了一个节点类Node,Node 节点内部的 SHARED 用来标记该线程是获取共享资源时被阻挂起后放入AQS 队列的, EXCLUSIVE 用来标记线程是 取独占资源时被挂起后放入AQS 队列
- AQS 使用一个 volatile 修饰的 int 类型的成员变量 state 来表示同步状态,修改同步状态成功即为获得锁,volatile 保证了变量在多线程之间的可见性,修改 State 值时通过 CAS 机制来保证修改的原子性
- 获取state的方式分为两种,独占方式和共享方式,一个线程使用独占方式获取了资源,其它线程就会在获取失败后被阻塞。一个线程使用共享方式获取了资源,另外一个线程还可以通过CAS的方式进行获取。
- 如果共享资源被占用,需要一定的阻塞等待唤醒机制来保证锁的分配,AQS 中会将竞争共享资源失败的线程添加到一个变体的 CLH 队列中。
AQS抽象队列同步器
CLH队列
AQS 中的队列是 CLH 变体的虚拟双向队列,通过将每条请求共享资源的线程封装成一个节点来实现锁的分配:
AQS变种CLH队列
AQS 中的 CLH 变体等待队列拥有以下特性:
- AQS 中队列是个双向链表,也是 FIFO 先进先出的特性
- 通过 Head、Tail 头尾两个节点来组成队列结构,通过 volatile 修饰保证可见性
- Head 指向节点为已获得锁的节点,是一个虚拟节点,节点本身不持有具体线程
- 获取不到同步状态,会将节点进行自旋获取锁,自旋一定次数失败后会将线程阻塞,相对于 CLH 队列性能较好
ps:AQS源码里面有很多细节可问,建议有时间好好看看AQS源码。
30.ReentrantLock实现原理?
ReentrantLock 是可重入的独占锁,只能有一个线程可以获取该锁,其它获取该锁的线程会被阻塞而被放入该锁的阻塞队列里面。
看看ReentrantLock的加锁操作:
// 创建非公平锁
ReentrantLock lock = new ReentrantLock();
// 获取锁操作
lock.lock();
try {
// 执行代码逻辑
} catch (Exception ex) {
// ...
} finally {
// 解锁操作
lock.unlock();
}
new ReentrantLock()
构造函数默认创建的是非公平锁 NonfairSync。
公平锁 FairSync
- 公平锁是指多个线程按照申请锁的顺序来获取锁,线程直接进入队列中排队,队列中的第一个线程才能获得锁
- 公平锁的优点是等待锁的线程不会饿死。缺点是整体吞吐效率相对非公平锁要低,等待队列中除第一个线程以外的所有线程都会阻塞,CPU 唤醒阻塞线程的开销比非公平锁大
非公平锁 NonfairSync
- 非公平锁是多个线程加锁时直接尝试获取锁,获取不到才会到等待队列的队尾等待。但如果此时锁刚好可用,那么这个线程可以无需阻塞直接获取到锁
- 非公平锁的优点是可以减少唤起线程的开销,整体的吞吐效率高,因为线程有几率不阻塞直接获得锁,CPU 不必唤醒所有线程。缺点是处于等待队列中的线程可能会饿死,或者等很久才会获得锁
默认创建的对象lock()的时候:
- 如果锁当前没有被其它线程占用,并且当前线程之前没有获取过该锁,则当前线程会获取到该锁,然后设置当前锁的拥有者为当前线程,并设置 AQS 的状态值为1 ,然后直接返回。如果当前线程之前己经获取过该锁,则这次只是简单地把 AQS 的状态值加1后返回。
- 如果该锁己经被其他线程持有,非公平锁会尝试去获取锁,获取失败的话,则调用该方法线程会被放入 AQS 队列阻塞挂起。
ReentrantLock 非公平锁加锁流程简图
31.ReentrantLock怎么实现公平锁的?
new ReentrantLock()
构造函数默认创建的是非公平锁 NonfairSync
public ReentrantLock() {
sync = new NonfairSync();
}
同时也可以在创建锁构造函数中传入具体参数创建公平锁 FairSync
ReentrantLock lock = new ReentrantLock(true);
--- ReentrantLock
// true 代表公平锁,false 代表非公平锁
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
FairSync、NonfairSync 代表公平锁和非公平锁,两者都是 ReentrantLock 静态内部类,只不过实现不同锁语义。
非公平锁和公平锁的两处不同:
- 非公平锁在调用 lock 后,首先就会调用 CAS 进行一次抢锁,如果这个时候恰巧锁没有被占用,那么直接就获取到锁返回了。
- 非公平锁在 CAS 失败后,和公平锁一样都会进入到 tryAcquire 方法,在 tryAcquire 方法中,如果发现锁这个时候被释放了(state == 0),非公平锁会直接 CAS 抢锁,但是公平锁会判断等待队列是否有线程处于等待状态,如果有则不去抢锁,乖乖排到后面。
公平锁tryAcquire
相对来说,非公平锁会有更好的性能,因为它的吞吐量比较大。当然,非公平锁让获取锁的时间变得更加不确定,可能会导致在阻塞队列中的线程长期处于饥饿状态。
32.CAS呢?CAS了解多少?
CAS叫做CompareAndSwap,⽐较并交换,主要是通过处理器的指令来保证操作的原⼦性的。
CAS 指令包含 3 个参数:共享变量的内存地址 A、预期的值 B 和共享变量的新值 C。
只有当内存中地址 A 处的值等于 B 时,才能将内存中地址 A 处的值更新为新值 C。作为一条 CPU 指令,CAS 指令本身是能够保证原子性的 。
33.CAS 有什么问题?如何解决?
CAS的经典三大问题:
CAS三大问题
ABA 问题
并发环境下,假设初始条件是A,去修改数据时,发现是A就会执行修改。但是看到的虽然是A,中间可能发生了A变B,B又变回A的情况。此时A已经非彼A,数据即使成功修改,也可能有问题。
怎么解决ABA问题?
- 加版本号
每次修改变量,都在这个变量的版本号上加1,这样,刚刚A->B->A,虽然A的值没变,但是它的版本号已经变了,再判断版本号就会发现此时的A已经被改过了。参考乐观锁的版本号,这种做法可以给数据带上了一种实效性的检验。
Java提供了AtomicStampReference类,它的compareAndSet方法首先检查当前的对象引用值是否等于预期引用,并且当前印戳(Stamp)标志是否等于预期标志,如果全部相等,则以原子方式将引用值和印戳标志的值更新为给定的更新值。
循环性能开销
自旋CAS,如果一直循环执行,一直不成功,会给CPU带来非常大的执行开销。
怎么解决循环性能开销问题?
在Java中,很多使用自旋CAS的地方,会有一个自旋次数的限制,超过一定次数,就停止自旋。
只能保证一个变量的原子操作
CAS 保证的是对一个变量执行操作的原子性,如果对多个变量操作时,CAS 目前无法直接保证操作的原子性的。
怎么解决只能保证一个变量的原子操作问题?
- 可以考虑改用锁来保证操作的原子性
- 可以考虑合并多个变量,将多个变量封装成一个对象,通过AtomicReference来保证原子性。
34.Java有哪些保证原子性的方法?如何保证多线程下i++ 结果正确?
Java保证原子性方法
- 使用循环原子类,例如AtomicInteger,实现i++原子操作
- 使用juc包下的锁,如ReentrantLock ,对i++操作加锁lock.lock()来实现原子性
- 使用synchronized,对i++操作加锁
35.原子操作类了解多少?
当程序更新一个变量时,如果多线程同时更新这个变量,可能得到期望之外的值,比如变量i=1,A线程更新i+1,B线程也更新i+1,经过两个线程操作之后可能i不等于3,而是等于2。因为A和B线程在更新变量i的时候拿到的i都是1,这就是线程不安全的更新操作,一般我们会使用synchronized来解决这个问题,synchronized会保证多线程不会同时更新变量i。
其实除此之外,还有更轻量级的选择,Java从JDK 1.5开始提供了java.util.concurrent.atomic包,这个包中的原子操作类提供了一种用法简单、性能高效、线程安全地更新一个变量的方式。
因为变量的类型有很多种,所以在Atomic包里一共提供了13个类,属于4种类型的原子更新方式,分别是原子更新基本类型、原子更新数组、原子更新引用和原子更新属性(字段)。
原子操作类
Atomic包里的类基本都是使用Unsafe实现的包装类。
使用原子的方式更新基本类型,Atomic包提供了以下3个类:
-
AtomicBoolean:原子更新布尔类型。
-
AtomicInteger:原子更新整型。
-
AtomicLong:原子更新长整型。
通过原子的方式更新数组里的某个元素,Atomic包提供了以下4个类:
-
AtomicIntegerArray:原子更新整型数组里的元素。
-
AtomicLongArray:原子更新长整型数组里的元素。
-
AtomicReferenceArray:原子更新引用类型数组里的元素。
-
AtomicIntegerArray类主要是提供原子的方式更新数组里的整型
原子更新基本类型的AtomicInteger,只能更新一个变量,如果要原子更新多个变量,就需要使用这个原子更新引用类型提供的类。Atomic包提供了以下3个类:
-
AtomicReference:原子更新引用类型。
-
AtomicReferenceFieldUpdater:原子更新引用类型里的字段。
-
AtomicMarkableReference:原子更新带有标记位的引用类型。可以原子更新一个布尔类型的标记位和引用类型。构造方法是AtomicMarkableReference(V initialRef,boolean initialMark)。
如果需原子地更新某个类里的某个字段时,就需要使用原子更新字段类,Atomic包提供了以下3个类进行原子字段更新:
- AtomicIntegerFieldUpdater:原子更新整型的字段的更新器。
- AtomicLongFieldUpdater:原子更新长整型字段的更新器。
- AtomicStampedReference:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于原子的更新数据和数据的版本号,可以解决使用CAS进行原子更新时可能出现的 ABA问题。
36.AtomicInteger 的原理?
一句话概括:使用CAS实现。
以AtomicInteger的添加方法为例:
public final int getAndIncrement() {
return unsafe.getAndAddInt(this, valueOffset, 1);
}
通过Unsafe
类的实例来进行添加操作,来看看具体的CAS操作:
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;
}
compareAndSwapInt 是一个native方法,基于CAS来操作int类型变量。其它的原子操作类基本都是大同小异。
37.线程死锁了解吗?该如何避免?
死锁是指两个或两个以上的线程在执行过程中,因争夺资源而造成的互相等待的现象,在无外力作用的情况下,这些线程会一直相互等待而无法继续运行下去。
死锁示意图
那么为什么会产生死锁呢? 死锁的产生必须具备以下四个条件:
死锁产生必备四条件
- 互斥条件:指线程对己经获取到的资源进行它性使用,即该资源同时只由一个线程占用。如果此时还有其它线程请求获取获取该资源,则请求者只能等待,直至占有资源的线程释放该资源。
- 请求并持有条件:指一个 线程己经持有了至少一个资源,但又提出了新的资源请求,而新资源己被其它线程占有,所以当前线程会被阻塞,但阻塞 的同时并不释放自己已经获取的资源。
- 不可剥夺条件:指线程获取到的资源在自己使用完之前不能被其它线程抢占,只有在自己使用完毕后才由自己释放该资源。
- 环路等待条件:指在发生死锁时,必然存在一个线程——资源的环形链,即线程集合 {T0,T1,T2,…… ,Tn} 中 T0 正在等待一 T1 占用的资源,Tl1正在等待 T2用的资源,…… Tn 在等待己被 T0占用的资源。
该如何避免死锁呢?答案是至少破坏死锁发生的一个条件。
-
其中,互斥这个条件我们没有办法破坏,因为用锁为的就是互斥。不过其他三个条件都是有办法破坏掉的,到底如何做呢?
-
对于“请求并持有”这个条件,可以一次性请求所有的资源。
-
对于“不可剥夺”这个条件,占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源,这样不可抢占这个条件就破坏掉了。
-
对于“环路等待”这个条件,可以靠按序申请资源来预防。所谓按序申请,是指资源是有线性顺序的,申请的时候可以先申请资源序号小的,再申请资源序号大的,这样线性化后就不存在环路了。
38.那死锁问题怎么排查呢?
可以使用jdk自带的命令行工具排查:
- 使用jps查找运行的Java进程:jps -l
- 使用jstack查看线程堆栈信息:jstack -l 进程id
基本就可以看到死锁的信息。
还可以利用图形化工具,比如JConsole。出现线程死锁以后,点击JConsole线程面板的检测到死锁
按钮,将会看到线程的死锁信息。