chatgpt生成
#include <opencv2/core.hpp>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace dnn;
int main()
{
// 加载模型和配置文件
String model_path = "path_to_model_file";
String config_path = "path_to_config_file";
Net net = readNetFromCaffe(config_path, model_path);
// 读取输入图像
Mat image = imread("path_to_input_image");
// 构建blob,将图像输入模型中进行预处理
Mat blob = blobFromImage(image, 1.0, Size(300, 300), Scalar(104.0, 177.0, 123.0));
// 设置输入blob
net.setInput(blob);
// 运行前向传播,获取人脸检测结果
Mat detections = net.forward();
// 遍历检测结果
for (int i = 0; i < detections.size[2]; i++)
{
float confidence = detections.at<float>(0, 0, i, 2); // 获取置信度
if (confidence > 0.5) // 设置置信度阈值
{
// 计算人脸框的位置
int startX = static_cast<int>(detections.at<float>(0, 0, i, 3) * image.cols);
int startY = static_cast<int>(detections.at<float>(0, 0, i, 4) * image.rows);
int endX = static_cast<int>(detections.at<float>(0, 0, i, 5) * image.cols);
int endY = static_cast<int>(detections.at<float>(0, 0, i, 6) * image.rows);
// 绘制人脸框和置信度
String text = format("%.2f%%", confidence * 100);
int y = startY - 10 > 10 ? startY - 10 : startY + 10;
rectangle(image, Point(startX, startY), Point(endX, endY), Scalar(0, 255, 0), 2);
putText(image, text, Point(startX, y), FONT_HERSHEY_SIMPLEX, 0.45, Scalar(0, 255, 0), 2);
}
}
// 显示输出图像
imshow("Output", image);
waitKey(0);
destroyAllWindows();
return 0;
}
请确保替换示例代码中的model_path
、config_path
和image_path
为正确的文件路径。
以上代码将从给定的模型文件和配置文件中加载人脸检测器,并对输入图像进行人脸检测,然后显示输出图像,并在检测到的人脸周围绘制边框和检测到的置信度。
标签:人脸识别,示例,int,image,DNN,detections,startY,人脸,path From: https://www.cnblogs.com/dq0618/p/17558003.html