首页 > 编程语言 >《架构整洁之道》学习笔记 Part 2 编程范式

《架构整洁之道》学习笔记 Part 2 编程范式

时间:2023-07-16 09:22:46浏览次数:30  
标签:范式 struct Point double 编程 Part 面向对象编程 函数

计算机编程发展至今,一共只有三个编程范式:

  • 结构化编程
  • 面向对象编程
  • 函数式编程

编程范式和软件架构的关系

  • 结构化编程是各个模块的算法实现基础
  • 多态(面向对象编程)是跨越架构边界的手段
  • 函数式编程是规范和限制数据存放位置与访问权限的手段

软件架构的三大关注重点功能性组建独立性以及数据管理,和编程范式不谋而合

结构化编程

限制控制权的直接转移,禁止 goto,用 if/else/while 替代

  • Dijkstra 发现:goto 语句的某些用法会导致模块无法被递归拆分成更小的、可证明的单元,这会导致无法采用分解法将大型问题进一步拆分成更小的、可证明的部分。
  • Bohm 和 Jocopini 证明了:可以用顺序结构、分支结构、循环结构构造出任何程序
  • 测试只能证明 Bug 的存在,并不能证明不存在 Bug
  • 结构化编程范式的价值:赋于我们构建可证伪程序单元的能力。如果测试无法证伪这些函数,就可以认为这些函数足够正确
  • 在架构设计领域,功能性降解拆分仍然是最佳实践之一

面向对象编程

限制控制权的间接转移,禁用函数指针,用多态替代

什么是面向对象?
  • 数据与函数的组合?
    • o.f() 和 f(o) 没有区别
  • 对真实世界进行建模的方式?
    • 到底如何进行?为什么这么做?有什么好处?
    • 面向对象编程究竟是什么?
  • 封装、继承、多态?
    • 面向对象编程语言必须支持这三个特性
封装

把一组关联的数据和函数管理起来,外部只能看见部分函数,数据则完全不可见。

封装并不是面向对象语言特有的,C 语言也支持,而且是完美的支持。

point.h

struct Point;
struct Point* makePoint(double x, double y);
double distance(struct Point *p1, struct Point *p2)

利用 forward declaration,Point 的数据结构、内部实现对 point.h 的使用者完全不可见。

而后来的 C++ 虽然是面向对象的编程语言,但却破坏了封装性:

point.h

class Point {
public:
    Point(double x, double y);
    double distance(const Point& p1, const Point& p2);
    
private:
    double sqrt(double x);
private:
    double x;
    double y;
};

C++ 编译器需要知道类的对象大小,因此必须在头文件中看到成员变量的定义。虽然 private 限制了使用者访问私有成员,但这样仍然暴露了类的内部实现。(C++ 的 PIMPL 惯用法可以在一定程度上缓解这个问题)

Java 和 C# 抛弃了头文件、实现分离的编程方式,进一步削弱了封装性,因为无法区分类的声明和定义。

继承

C 语言也支持继承

namedPoint.h

struct NamedPoint;
struct NamedPoint* makeNamedPoint(double x, double y, char* name);
void setName(struct NamePoint *np, char* name);
char* getName(struct NamedPoint *np);

namedPoint.c

#include "namePoint.h"

struct NamedPoint {
    double x;
    double y;
    char* name;
};

// 或者
#include "point.h"
struct NamePoint {
    Point parent_;
    char* name;
};

// 省略其他函数实现

main.c

#include "point.h"
#include "namedPoint.h"

int main() {
	struct NamePoint* p1 = makeNamedPoint(0.0, 0.0, "origin");
    struct NamePoint* p2 = nameNamePoint(1.0, 1.0, "upperRight");
	// C 语言中的继承需要强制转换 p1、p2 的类型
    // 真正的面向对象语言一般可以自动将子类转成父类指针/引用
    distance((struct Point*)p1, (struct Point*)p2);
}

在 main.c 中,NamePoint 被当作 Point 来使用。之所以可以,是因为 NamePoint 是 Point 的超集,且共同成员的顺序一致。C++ 中也是这样实现单继承的。

多态

在面向对象语言发明之前,C 语言也支持多态。

UNIX 要求每个 IO 设备都提供 open、close、read、write、seek 这 5 个标准函数:

struct FILE {
    void (*open)(char* name, int mode);
    void (*close)();
    int (*read)();
    void (*write)(char);
    void (*seek)(long index, int mode);
};

这里的 FILE 就相当于一个接口类,不同的 IO 设备有各自的实现函数,通过设置函数指针指向不同的实现来达到多态的目的。上层的功能逻辑只依赖 FILE 结构体中的 5 个标准函数,并不关心具体的 IO 设备什么。更换 IO 设备也无需修改功能逻辑的代码,IO 只是功能逻辑的一个插件

C++ 中每个虚函数的地址都记录在一个叫 vtable 的数据结构中,带有虚函数的类会有一个隐藏的指向 vtable 的虚表指针,每次调用虚函数都会先查询 vtable,子类构造函数负责将子类虚函数地址加载到对象的 vtable 中。

多态本质上就是函数指针的一种应用。用函数指针实现多态的问题在于函数指针的危险性。依赖人为遵守一系列的约定很容易产生难以跟踪和调试的 bug。面向对象编程使得多态再不需要依赖人工遵守约定,可以更简单、更安全地实现复杂功能。面向对象编程的出现使得“插件式架构”普及开来。

此外,面向对象编程的带来的另一个重大好处是依赖反转:通过引入接口,源码的依赖关系不再受到控制流的限制,软件架构师可以轻易地更改源码的依赖关系。这也是面向对象编程范式的核心本质(关于依赖反转,后面会单独用一篇来介绍)。

函数式编程

限制赋值操作

  • 函数式编程中的变量不可变

  • 不可变性是软件架构需要考虑的重点,因为所有的并发、死锁、竞争问题都是可变变量导致的,如果变量不可变,就不会有这些问题

  • 架构设计良好的程序应该拆分成可变、不可变两种组件,其中可变状态组件中的逻辑越少越好

  • 事件溯源:只存储事务记录,不存储具体状态;需要状态时,从头计算所有事务。

    • 例如银行程序只保存每次的交易记录,不保存用户余额,每次查询余额时,将全部交易记录取出累计
    • 这种模式只需要 CR (Create & Retrieve),不需要 UD (Update & Delete),没有了更新和删除操作,自然也不存在病发问题
    • 缺点:对存储和处理能力要求较高(但随着技术的发展,这方面将越来越不成问题)
    • 应用:git

总结

所有三个范式都是限制了编码方式,而不是增加新能力

  • 结构化编程:限制控制权的直接转移,禁止 goto,用 if/else/while 替代
  • 面向对象编程:限制控制权的间接转移,禁用函数指针,用多态替代
  • 函数式编程:限制赋值操作

三个编程范式都是在 1958 - 1968 年间提出,此后再也没有新的范式提出,未来几乎不可能再有新的范式。因为除了 goto 语句、函数指针、赋值语句之外,也没有什么可以限制的了。

软件编程的核心没有变:计算机程序无一例外是由顺序结构、分支结构、循环结构和间接转移这几种行为组合而成的,无可增加, 也缺一不可。

标签:范式,struct,Point,double,编程,Part,面向对象编程,函数
From: https://www.cnblogs.com/tengzijian/p/17557427.html

相关文章

  • 《架构整洁之道》学习笔记 Part 1 概述
    本书主题介绍什么是优秀的软件架构,以提高软件架构质量介绍系统架构的各种属性与成本和生产力的关系,以采用好的设计和架构以便减少构建成本好的软件架构可以带来什么?大大节省软件项目构建与维护的人力成本每次变更:改动少,易于实施,不容易出bug用最小的成本,最大程度满足功能......
  • Python 并发编程之IO模型(转载)
    Python并发编程之IO模型https://www.cnblogs.com/linhaifeng/articles/7454717.htmlIO模型介绍为了更好地了解IO模型,我们需要事先回顾下:同步、异步、阻塞、非阻塞同步(synchronous)IO和异步(asynchronous)IO,阻塞(blocking)IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别......
  • 【雕爷学编程】Arduino动手做(02)---光敏电阻模块3
    37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手尝试系列实验,不管成功(程序走通)与否,都会记录下来—小小的进步或是搞......
  • 【雕爷学编程】Arduino动手做(02)---光敏电阻模块2
    37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手尝试系列实验,不管成功(程序走通)与否,都会记录下来—小小的进步或是搞......
  • 【雕爷学编程】Arduino动手做(06)---KY-038声音传感器模块4
    37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手尝试系列实验,不管成功(程序走通)与否,都会记录下来—小小的进步或是搞......
  • 【雕爷学编程】Arduino动手做(06)---KY-038声音传感器模块2
    37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手尝试系列实验,不管成功(程序走通)与否,都会记录下来—小小的进步或是搞......
  • 【雕爷学编程】Arduino动手做(152)---BMI160 六轴陀螺仪模块2
    37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手尝试系列实验,不管成功(程序走通)与否,都会记录下来—小小的进步或是搞......
  • Spartacus Product List Page ProductSearchPage Observable 对象的设计明细
    源代码如下:readonlymodel$:Observable<ProductSearchPage>=using(()=>this.searchByRouting$.subscribe(),()=>this.searchResults$).pipe(shareReplay({bufferSize:1,refCount:true}));上面这段代码是基于Angular框架和RxJS库的,RxJS是一个用于处理......
  • Spartacus search box 里显示的产品列表数据是从哪里进行搜索的
    如下图所示,selector:cx-searchboxComponent名称:Search-box.component.ts点击searchbar之后:添加css类:在断点停下来的地方,查看搜索结果列表:抛出ProductSearch的action:最后调用ProductSearchConnector进行搜索:dispatch到adapter:ProductListComponent......
  • 关于 Spartacus ProdutList Component Service model$ 的填充逻辑
    源代码:这段代码是Angular中的RxJS代码,主要是创建一个名为model$的Observable对象,这个对象的生成逻辑复杂一些,主要涉及using,subscribe,pipe,shareReplay等函数的使用。逐行解释如下:readonlymodel$:Observable<ProductSearchPage>=using(这一行定义了一个......