1.算法仿真效果
matlab2022a仿真结果如下:
2.算法涉及理论知识概要
遗传算法的原理
遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。
一、遗传算法的目的
典型的遗传算法CGA(Canonical Genetic Algorithm)通常用于解决下面这一类的静态最优化问题:考虑对于一群长度为L的二进制编码bi,i=1,2,…,n;有
bi{0,1}L (3-84)
给定目标函数f,有f(bi),并且
0
同时f(bi)≠f(bi+1)求满足下式
max{f(bi)|bi{0,1}L}
的bi。很明显,遗传算法是一种最优化方法,它通过进化和遗传机理,从给出的原始解群中,不断进化产生新的解,最后收敛到一个特定的串bi处,即求出最优解。
二、遗传算法的基本原理
长度为L的n个二进制串bi(i=1,2,…,n)组成了遗传算法的初解群,也称为初始群体。在每个串中,每个二进制位就是个体染色体的基因。根据进化术语,对群体执行的操作有三种:
1.选择(Selection)
这是从群体中选择出较适应环境的个体。这些选中的个体用于繁殖下一代。故有时也称这一操作为再生(Reproduction)。由于在选择用于繁殖下一代的个体时,是根据个体对环境的适应度而决定其繁殖量的,故而有时也称为非均匀再生(differential reproduction)。
2.交叉(Crossover)
这是在选中用于繁殖下一代的个体中,对两个不同的个体的相同位置的基因进行交换,从而产生新的个体。
3.变异(Mutation)
这是在选中的个体中,对个体中的某些基因执行异向转化。在串bi中,如果某位基因为1,产生变异时就是把它变成0;反亦反之。
遗传算法的原理可以简要给出如下:
choose an intial population
determine the fitness of each individual
perform selection
repeat
perform crossover
perform mutation
determine the fitness of each individual
perform selection
until some stopping criterion applies
这里所指的某种结束准则一般是指个体的适应度达到给定的阀值;或者个体的适应度的变化率为零。
三、遗传算法的步骤和意义
1.初始化
选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。
通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。
2.选择
根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。
给出目标函数f,则f(bi)称为个体bi的适应度。以
为选中bi为下一代个体的次数。
显然.从式(3—86)可知:
(1)适应度较高的个体,繁殖下一代的数目较多。
(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。
这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。
3.交叉
对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。
例如有个体
S1=100101
S2=010111
选择它们的左边3位进行交叉操作,则有
S1=010101
S2=100111
一般而言,交 婊显譖。取值为0.25—0.75。
4.变异
根据生物遗传中基因变异的原理,以变异概率Pm对某些个体的某些位执行变异。在变异时,对执行变异的串的对应位求反,即把1变为0,把0变为1。变异概率Pm与生物变异极小的情况一致,所以,Pm的取值较小,一般取0.01-0.2。
例如有个体S=101011。
对其的第1,4位置的基因进行变异,则有
S'=001111
单靠变异不能在求解中得到好处。但是,它能保证算法过程不会产生无法进化的单一群体。因为在所有的个体一样时,交叉是无法产生新的个体的,这时只能靠变异产生新的个体。也就是说,变异增加了全局优化的特质。
f1覆盖率
覆盖的计算,采用的是平面扫描法,对于两种传感器,一个圆形,一个正方形,那么对于每次优化得到的坐标,我们对整个平面区域进行扫描,计算每一个点是否处于某个或者多个传感器,如果满足这个条件,那么这个点计入到覆盖区域里面,然后扫描完所有点之后,统计一共多少个点呗扫描进去了,即覆盖率。
f2安装难易度
安装难易度,这个部分没有专门的论文介绍,我们这里定义是传感器和额障碍物的距离作为安装难易度的判断依据。
3.MATLAB核心程序
%避开障碍物 Idx1 = []; for i=1:Nr1 for j = 1:(NUM1+NUM2) %判断传感器的坐标点区域和传感器是否有交集,有交集那么说明碰到障碍物了,则去除这些错误的部署点 if abs(X1(j)-(X3(i)+L(i)/2))<=L(i)/2 & abs(Y1(j)-(Y3(i)+W(i)/2))<=W(i)/2 Idx1 = [Idx1,j]; end end end ........................................................................ idx2 = unique(Idx1); X1(idx2) = []; Y1(idx2) = []; NUM1_new = NUM1-length(find(idx2<=NUM1)); NUM2_new = length(X1)-NUM1_new; %上面两个步骤,去掉了和障碍物有重叠的部署位置 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %第一个,覆盖率 Sar=0; for i = 1:SCALE for j = 1:SCALE Nums = 0; for k = 1:(NUM1_new+NUM2_new) if k<=NUM1_new%圆形覆盖率计算 if ((X1(k) - i)^2 + (Y1(k) - j)^2) < Rad1^2 Nums=Nums+1; end end if k>NUM1_new & k<=(NUM1_new+NUM2_new)%正方形覆盖率计算 if abs(X1(k) - i)<=Rad2 & abs(Y1(k) - j)<=Rad2 Nums=Nums+1; end end end if Nums > 0 Sar=Sar+1; end end end fobj1 = 1-Sar/SCALE/SCALE;%整体减去被覆盖到的点,就是非覆盖率,因为优化算法是往最小值找的,所以需要减去覆盖率,得到非覆盖率,越小越好 %第二个安装难度,这里做一个定义,和障碍物越近,那么难度越大因为涉及到信号的传输和障碍物的避让问题 fobj2_= []; for i=1:(NUM1_new+NUM2_new) if i<=NUM1_new%圆形 d1=[]; d2=[]; for j=1:Nr1 tmps = sqrt((X1(i) - X3(j))^2 + (Y1(i) - Y3(j))^2); if tmps < Rad1%满足条件的则保持到d1数据库 d1=[d1,1/(tmps+1)]; end end for j=1:Nr2 tmps = sqrt((X1(i) - X4(j))^2 + (Y1(i) - Y4(j))^2); if tmps < Rad1%满足条件的则保持到d2数据库 d2=[d2,1/(tmps+1)]; end end if isempty([d1,d2])==1 fobj2_(i)=0; else fobj2_(i)=mean([d1,d2]); end end
标签:仿真,下一代,变异,bi,个体,适应度,matlab,GA,遗传算法 From: https://www.cnblogs.com/51matlab/p/17530408.html