首页 > 编程语言 >6-3 最短路径(弗洛伊德算法)

6-3 最短路径(弗洛伊德算法)

时间:2023-06-21 09:14:52浏览次数:49  
标签:vexnum 弗洛伊德 start int MVNum 最短 ++ 算法 Path

#include<iostream>
using namespace std;

#define MaxInt 32767
#define MVNum 100

typedef char VerTexType; 
typedef int ArcType;

int Path[MVNum][MVNum];    //标志两个结点之间是否可达
int D[MVNum][MVNum];//存储两个结点间的边的权重

typedef struct{ 
    VerTexType vexs[MVNum];//结点名称
    ArcType arcs[MVNum][MVNum];//边的位置
    int vexnum,arcnum; //结点个数,边的个数
}AMGraph;

void CreateUDN(AMGraph& G) {
    cin >> G.vexnum;
    cin >> G.arcnum;

    for (int i = 0; i < G.vexnum; i++) {
        cin >> G.vexs[i];//输入各个结点各自的名称(字符类型)
    }

    for (int i = 0; i < G.vexnum; i++) {
        for (int j = 0; j < G.vexnum; j++) {
            G.arcs[i][j] = MaxInt;//初始化各条边,初始化为不可达
        }
    }

    for (int k = 0; k < G.arcnum; k++) {//创建有向邻接矩阵
        int i, j, w;
        cin >> i >> j >> w;
        G.arcs[i][j] = w;
    }
}


void ShortestPath_Floyed(AMGraph G) {//最短路径核心算法--弗洛伊德算法
    for (int i = 0; i < G.vexnum; i++) {
        for (int j = 0; j < G.vexnum; j++) {
            D[i][j] = G.arcs[i][j];
            if (i != j && G.arcs[i][j] < MaxInt) {
                Path[i][j] = i;//标志为其正经权重
            } else {
                Path[i][j] = -1;//标志位不可达
            }
        }
    }

    for (int k = 0; k < G.vexnum; k++) {
        for (int i = 0; i < G.vexnum; i++) {
            for (int j = 0; j < G.vexnum; j++) {
                if (D[i][k] + D[k][j] < D[i][j]) {//找寻最短路径
                    D[i][j] = D[i][k] + D[k][j];//更换最短路径
                    Path[i][j] = Path[k][j];//更换对应标志
                }
            }
        }
    }
}


int LocateVex(AMGraph G, VerTexType v) {//定位某个结点的位置
    for (int i = 0; i < G.vexnum; i++) {
        if (G.vexs[i] == v) {
            return i;
        }
    }
    return -1;  
}

void DisplayPath(AMGraph G , int begin ,int temp ){//输出相应的运行结果
    if(Path[begin][temp] != -1){
        DisplayPath(G , begin ,Path[begin][temp]);
        cout << G.vexs[Path[begin][temp]] << "->";
    }
}


int main(){
   AMGraph G;
    char start , destination;
    int num_start , num_destination;
    CreateUDN(G);
    ShortestPath_Floyed(G);
    cin >> start >> destination;//输入源点和终点
    num_start = LocateVex(G , start);
    num_destination = LocateVex(G , destination);
    DisplayPath(G , num_start , num_destination);//利用迭代算法寻找源点和终点的最短路径
    cout << G.vexs[num_destination]<<endl;
    cout << D[num_start][num_destination];
    return 0;
}

标签:vexnum,弗洛伊德,start,int,MVNum,最短,++,算法,Path
From: https://www.cnblogs.com/liuzijin/p/17495348.html

相关文章