首页 > 编程语言 >批量生成,本地推理,人工智能声音克隆框架PaddleSpeech本地批量克隆实践(Python3.10)

批量生成,本地推理,人工智能声音克隆框架PaddleSpeech本地批量克隆实践(Python3.10)

时间:2023-06-15 12:55:35浏览次数:64  
标签:克隆 批量 voc get am 本地 output predictor dir

云端炼丹固然是极好的,但不能否认的是,成本要比本地高得多,同时考虑到深度学习的训练相对于推理来说成本也更高,这主要是因为它需要大量的数据、计算资源和时间等资源,并且对超参数的调整也要求较高,更适合在云端进行。

在推理阶段,模型的权重和参数不再调整。相反,模型根据输入数据的特征进行计算,并输出预测结果。推理阶段通常需要较少的计算资源和时间,所以训练我们可以放在云端,而批量推理环节完全可以挪到本地,这样更适合批量的声音克隆场景。

本地配置PaddleSpeech

首先需要在本地安装PaddlePaddle框架,关于PaddlePaddle的本地配置,请移步:声音好听,颜值能打,基于PaddleGAN给人工智能AI语音模型配上动态画面(Python3.10),这里不再赘述。

安装好PaddlePaddle之后,运行命令本地安装PaddleSpeech:

pip3 install paddlespeech

由于paddlespeech的依赖库中包括webrtcvad,如果本地环境没有安装过Microsoft Visual C++ 14.0,大概率会报这个错误:

building 'Crypto.Random.OSRNG.winrandom' extension  
error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual  
C++ Build Tools": http://landinghub.visualstudio.com/visual-cpp-build-tools

此时需要安装一下Microsoft Visual C++ 14.0的开发者工具,最好不要使用微软的线上安装包,推荐使用离线安装包,下载地址:

链接:https://pan.baidu.com/s/1VSRHAMuDkhzQo7nM4JihEA?pwd=or7x   
提取码:or7x

安装完C++ 14.0即可完成PaddleSpeech的安装:

D:\work\speech\master_voice>python  
Python 3.10.11 (tags/v3.10.11:7d4cc5a, Apr  5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)] on win32  
Type "help", "copyright", "credits" or "license" for more information.  
>>> import paddlespeech  
>>>

下载音色模型和声码器

音色模型就是之前我们在:声音克隆,精致细腻,人工智能AI打造国师“一镜到底”鬼畜视频,基于PaddleSpeech(Python3.10)中训练的国师的音色模型,下载地址:

链接:https://pan.baidu.com/s/1nKOPlI7P_u_a5UGdHX76fA?pwd=ygqp   
提取码:ygqp

随后下载声码器,这里推荐下载【PWGan】和【WaveRnn】两款声码器,不推荐【HifiGan】,因为【HifiGan】的效果实在太糟糕,PWGan的效果差强人意,WaveRnn质量最高,但推理时间也最慢。

下载地址:

链接:https://pan.baidu.com/s/1KHIZS5CrydtANXm6CszdYQ?pwd=6lsk   
提取码:6lsk

下载之后,分别解压到同一个目录即可。

本地推理

接下来我们就可以编写推理脚本了。

首先导入需要的模块:

from pathlib import Path  
import soundfile as sf  
import os  
from paddlespeech.t2s.exps.syn_utils import get_am_output  
from paddlespeech.t2s.exps.syn_utils import get_frontend  
from paddlespeech.t2s.exps.syn_utils import get_predictor  
from paddlespeech.t2s.exps.syn_utils import get_voc_output  
  
# 音色模型的路径  
am_inference_dir = "./master"  
  
# 声码器的路径  
voc_inference_dir_pwgan = "./pwgan"   
  
# 声码器的路径  
voc_inference_dir_wavernn = "./wavernn"   
  
  
  
# 克隆音频生成的路径  
wav_output_dir = "./output"  
  
# 选择设备[gpu / cpu],默认选择gpu,   
device = "gpu"

这里定义好模型和声码器的路径,同时定义输出路径,默认采用gpu进行推理,速度更快。

随后定义后要语音生成的文本:

text_dict = {  
    "1": "我原来想拿中石油的offer",  
    "2": "是不是很大胆",  
    "3": "中石油",  
    "4": "国企天花板",  
    "5": "就是中石油",  
    "6": "出差可以逛太古里",  
    "7": "太爽了",  
    "8": "我最早准备面试的时候",  
    "9": "跟所有同学说的只面中石油",  
    "10": "所有的同学,包括亲戚,朋友,他们所有人很兴奋",  
    "11": "我女朋友也很兴奋",  
    "12": "中石油",  
    "13": "一直说的是去中石油",  
    "14": "我一直在做去中石油的准备",  
    "15": "当时我面试的时候",  
    "16": "我说试用期只要20天",  
    "17": "或者只要25天",  
    "18": "两周到三周",  
    "19": "hr说为什么?",  
    "20": "我说很简单",  
    "21": "我每天飞四川",  
    "22": "单程两个小时",  
    "23": "早上去一次",  
    "24": "晚上去一次",  
    "25": "每天去两次",  
    "26": "我坚持10天",  
    "27": "20次",  
    "28": "就是20次",  
    "29": "成都太古里",  
    "30": "哇简直太爽了",  
    "31": "逛街",  
    "32": "去10天就够了",  
    "33": "然后前面的十天在北京",  
    "34": "上班",  
    "35": "严格地上班",  
    "36": "我说试用期只要二十天",  
    "37": "咱试用期就结束了",  
    "38": "哇hr说真的太厉害",  
    "39": "就挑战性太大了",  
    "40": "一天都不能请假啊",  
    "41": "但是后来我还是放弃了,哈哈哈",  
  
  
    "42": "你知道为什么",  
    "43": "我研究了大量的员工去成都的案例",  
    "44": "嗯,也有一些基层员工",  
    "45": "还有尤其是最近一段时间一些比较大胆的行为",  
    "46": "就是牵手那个我也看了",  
    "47": "我专门看",  
    "48": "研究",  
    "49": "就一直,我就一直下不了决心",  
    "50": "其实我真的非常想去啊,内心深处非常想",  
    "51": "你知道最大问题是什么,当然这是一个专业问题,简单地说最大问题就是街拍",  
    "52": "就是街拍",  
    "53": "因为你去了他就拍你啊",  
    "54": "就没有办法",  
    "55": "对一个员工",  
    "56": "对一个向往太古里的员工",  
    "57": "一个经常逛太古里的员工来说",  
    "58": "他给你来一个街拍",  
    "59": "全给你拍下来",  
    "60": "上传抖音",  
    "61": "因为你不能蹭蹭蹭蹭",  
    "62": "逛的太快啊",  
    "63": "不能啊",  
    "64": "你从南边到北边",  
    "65": "你中间得逛啊",  
    "66": "就拍了",  
    "67": "就拍了",  
    "68": "第一是街拍避免不了",  
    "69": "无论怎么样",  
    "70": "我想来想去",  
    "71": "因为我算个内行嘛",  
    "72": "我不去了,我就知道街拍跑不了",  
    "73": "街拍,避免不了",  
  
    "74": "第二个",  
    "75": "你的工资会全都损失了",  
    "76": "不是损失一半的工资,一半无所谓",  
    "77": "是全部的工资,奖金,绩效,年终奖全都没有了",  
    "78": "然后你还得停职",  
    "79": "就很尴尬啊",  
    "80": "这样子就不好混了",  
    "81": "真的不好混了",  
    "82": "最后我差不多一个多月的思想斗争",  
    "83": "那是个重大决定",  
    "84": "因为我都是按照去中石油准备的",  
    "85": "背面试题呢",  
    "86": "后来说放弃",  
    "87": "我自己决定放弃",  
    "88": "一个人做的决定,一个人的思考",  
    "89": "一个多月以后我放弃了,我第一个电话打给人力,我说我放弃去中石油。他,啊这,就不能接受",  
    "90": "他已经完全沉浸到去太古里当中去了,你知道吧",  
    "91": "就想着太好了,就喜欢的不得了",  
    "92": "怎么可能就过来说服我",  
    "93": "我说你不用跟我说",  
    "94": "你都不太清楚",  
    "95": "反正去中石油",  
    "96": "说怎么可能,你能做到,就开始给我忽悠",  
    "97": "我放弃了",  
    "98": "然后我跟女朋友说放弃",  
    "99": "哎呀,她说她把包包裙子都买了,这那的",  
    "100": "所有人,大家都觉得太遗憾了。",  
    "101": "然后跟老板说",  
    "102": "最有意思是跟老板说",  
    "103": "说真的不去中石油了",  
    "104": "哎呀,哎呀",  
    "105": "就觉着好像就没劲了,哈哈哈",  
    "106": "说你不是开玩笑吧",  
    "107": "哎呀就觉得,好像不想要我了似的",  
    "108": "开玩笑啊,开玩笑",  
    "109": "就所有人都沮丧而失落",  
    "110": "就我看到大家的反应",  
    "111": "我也很难过,很难过",  
    "112": "我我,我后来还是放弃了",  
    "113": "放弃了,嗯",  
    "114": "所以中石油offer是一个学习",  
    "115": "它对于一个追求太古里的一个员工来说",  
    "116": "它是破坏性的",  
    "117": "你去了中石油又能怎么样呢?",  
    "118": "你丢掉了信仰",  
    "119": "丢掉了人格啊",  
    "120": "孰重孰轻啊",  
    "121": "所以我在学习",  
    "122": "我在学习做一个合格员工的思考",  
    "123": "这就是我的,遗憾",  
    "124": "但也许是我的一个清醒",  
    "125": "或者学习的心得",  
}

这里字典的key是文件名,value是音频的内容。

随后加载声码器地址中的配置文件:

# frontend  
frontend = get_frontend(  
    lang="mix",  
    phones_dict=os.path.join(am_inference_dir, "phone_id_map.txt"),  
    tones_dict=None  
)  
  
# am_predictor  
am_predictor = get_predictor(  
    model_dir=am_inference_dir,  
    model_file="fastspeech2_mix" + ".pdmodel",  
    params_file="fastspeech2_mix" + ".pdiparams",  
    device=device)  
  
# voc_predictor  
voc_predictor_pwgan = get_predictor(  
    model_dir=voc_inference_dir_pwgan,  
    model_file="pwgan_aishell3" + ".pdmodel",      
    params_file="pwgan_aishell3" + ".pdiparams",  
    device=device)  
  
  
voc_predictor_wavernn = get_predictor(  
    model_dir=voc_inference_dir_wavernn,  
    model_file="wavernn_csmsc" + ".pdmodel",      
    params_file="wavernn_csmsc" + ".pdiparams",  
    device=device)  
  
output_dir = Path(wav_output_dir)  
output_dir.mkdir(parents=True, exist_ok=True)  
  
sentences = list(text_dict.items())

这里我们准备两个声码器对象。

最后运行克隆函数:

def clone(voc_predictor):  
  
    merge_sentences = True  
    fs = 24000  
    for utt_id, sentence in sentences:  
        am_output_data = get_am_output(  
            input=sentence,  
            am_predictor=am_predictor,  
            am="fastspeech2_mix",  
            frontend=frontend,  
            lang="mix",  
            merge_sentences=merge_sentences,  
            speaker_dict=os.path.join(am_inference_dir, "phone_id_map.txt"),  
            spk_id=0, )  
        wav = get_voc_output(  
                voc_predictor=voc_predictor, input=am_output_data)  
        # 保存文件  
        sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=fs)  
  
  
if __name__ == '__main__':  
      
    clone(voc_predictor_pwgan)

这里默认的采样率是24000,am模型使用fastspeech2_mix,因为它可以兼容英文的阅读。

声码器选择voc_predictor_pwgan,当然也可以将参数修改为voc_predictor_wavernn。

生成后的效果:

结语

基于声学模型 FastSpeech2的PaddleSpeech的产品力已经相当惊人,就算是放在全球人工智能领域的尺度上,摆在微软这种业界巨头的最佳产品Azure-tts旁边,也是毫不逊色的,感谢百度,让普通人也能玩恶搞配音项目,最后奉上国师的鬼畜视频一键生成项目,与众乡亲同飨:

https://github.com/zcxey2911/zhangyimou_voice_clone_text

标签:克隆,批量,voc,get,am,本地,output,predictor,dir
From: https://www.cnblogs.com/v3ucn/p/17482570.html

相关文章

  • 批量下载微软云blob容器到本地(解决内容编码是gzip下载后乱码的问题)
    问题1(无法解决):因为要将微软云存储中的数据迁移到其他腾讯云cos中。但是由于微软云存储每一个blob容器中存在内容编码为gzip的js、css文件。导致在腾讯云上,使用存储迁移功能的时候,从微软云迁移到腾讯云存储的js、css文件都无法完全同步(js、css文件会同步失败)。所以只能先下载到本......
  • 一篇就让小白入门K8S,使用Minikube来搭建本地的单节点K8S集群
    开篇Kubernetes(通常简称为K8s)是一个开源的容器编排平台,它为应用程序的部署、扩展和管理提供了强大的工具和功能。在本文中,我们将通过一个实战案例,引导您进入Kubernetes的世界,了解其基本概念和架构,并帮助您安装和配置一个简单的Kubernetes集群。Kubernetes概述Kubernetes是一个......
  • STATA批量导出多个表到同一EXEL的多个不同工作表中
    sysuseauto,clearerase"auto_rep78_all.xls"exportexcelusing"auto_rep78_all.xls",firstrow(variable)forvaluesi=2/19{exportexcelusing"auto_rep78_all.xls",firstrow(variable)sheet("`i'")sheetm......
  • 虹科干货 | BI软件如何实时连接本地Excel?—以HK-Domo商业智能工具为例
    由于资源和人才的限制,很多中小微企业目前在数据收集和数据应用上还处于比较落后的阶段,没有合适的方法处理数据。最典型的情况就是通过Excel收集数据,然后频繁的手动生成报告。这样会导致数据质量差,流程重复,还可能增加数据错误的风险。因此,企业需要非常通过BI工具来改善数据处理流程,......
  • git 拉取分支到本地文件夹
    1.创建本地仓库$gitinit  2.与远程仓库建立联系$gitremoteaddorigin(复制的远程地址)。 3.确定你需要拉的分支名$gitfetchoriginchongfu(远程分支)。 4.本地创建的分支与远程分支相互连接$gitcheckout-b(本地分支名)origin/chon......
  • 【Python&RS】基于Python批量下载哨兵二号数据
    ​学遥感的避免不了使用哨兵数据,毕竟10m的分辨率可以满足大部分的定量分析,同时也是最重要的一点,它免费!!! 但如果一幅一幅去下载影像实在是太慢了,特别是如果需要研究长时间序列的影像,那下载数据就成了最痛苦的环节了。所以这里给大家分享一下如何使用Python和IDM批量下......
  • ssh批量执行
    安装sshpassyuminstallsshpass-yhost.txtip,root密码一下示例111.111.111.111,admin@1234free-h这里引号内写命令foripincathost.txt;doecho$ip|awk-F","'{print$1}';sshpass-pecho$ip|awk-F","'{print$2}'ssh-o......
  • 将easyui-datagrid组件克隆至另一个 easyui-datagrid组件 表结构(列)及数据完全一样
    将grid组件克隆至grid_toexcel组件表结构(列)及数据完全一样html<tableid='grid'class='easyui-datagrid'style='width:1250px;min-height:450px'title='列表'iconCls='icon-table'pagination='true'......
  • 便捷同步本地的博客文档到博客园
    前言我写博客的初心很简单,一是一些软件的配置过程(防止第二次配置的时候又抓瞎);二是记录下一下自己学习过程中的一些心得体会,在高乙超的博客中,我曾经看到一句话,叫"Tolearn,read;Toknow,write;Tomaster,teach"。过去二十年里,在学习的过程中,一直是作为一个输入方,应付考试......
  • 本地电脑连接远程服务器上的SQLServer配置
    1.首先是要打开SQLServer2016配置管理器 2.SQLServer网络配置的MSSQLSERVER的协议和配置相关的客户端协议,开启TCP/IP 3.数据库默认的远程端口是1433,但是不是安全的,可以手动更改端口,更待客户端协议的IP,本实例用1433端口  这里需要找到最下边的IPAll,然后修改......