首页 > 编程语言 >python: read excel

python: read excel

时间:2023-06-13 20:11:49浏览次数:39  
标签:ReadExcelData duobj python excel read print import Unnamed Insurance

 

"""
Insurance。py
edit: geovindu,Geovin Du,涂聚文
date 2023-06-13
保险类
"""

import sys
import os


class Insurance:
    """
    保险类
    """

    def __init__(self, InsuranceName, InsuranceCost, IMonth):
        """
        保险类  构造函数
        :param  InsuranceName:  保险类型
        :param  InsuranceCost:  保险费用
        :param  IMonth:  月份
        """
        self.__InsuranceName = InsuranceName
        self.__InsuranceCost = InsuranceCost
        self.__IMonth = IMonth

    def get_InsuranceName(self):
        """
        得到保险名称
        :return:  返回保险名称
        """
        return self.__InsuranceName

    def set_InsuranceName(self, InsuranceName):
        """
        设置保险名称
        :param  InsuranceName:  输入保险名称
        :return:  none
        """
        self.__InsuranceName = InsuranceName

    def get_InsuranceCost(self):
        """
        获取保险费用
        :return:  返回保险费用
        """
        return self.__InsuranceCost

    def set_InsuranceCost(self, InsuranceCost):
        """
        设置保险费用
        :param  InsuranceCost:  输入保险费用
        :return:  none
        """
        self.__InsuranceCost = InsuranceCost

    def get_IMonth(self):
        """
        获取月份
        :return:  返回月份
        """
        return self.__IMonth

    def set_IMonth(self, IMonth):
        """
        设置月份
        :param  IMonth:  输入月份
        :return:  none
        """
        self.__IMonth = IMonth

    def __str__(self):
        return f"InsuranceName:  {self.__InsuranceName},  InsuranceCost:  {self.__InsuranceCost},  Month:  {self.__IMonth}"



"""
ReadExcelData.py
读取excel文件数据
date 2023-06-13
edit: Geovin Du,geovindu, 涂聚文
"""
import xlrd
import xlwt
import xlwings as xw
import xlsxwriter
import openpyxl as ws
import pandas as pd
import pandasql
import os
import sys
from pathlib import Path
import re
import Insurance

class ReadExcelData:
    """
    读EXCEL文件

    """
    def ReadFileName(folderPath,exif):
        """
        文读文件夹下的文件列表
        :param folderPath:
        :param exif: 文件扩展名 如:'xls','xlsx','doc', 'docx'
        :return:返回文件名称列表,包括扩展名
        """
        # 查询某文件夹下的文件名
        #folderPath=Path('C:\\Users\\geovindu\\PycharmProjects\\pythonProject\\')
        #fileList=folderPath.glob('*.xls')
        filenames=[]
        fileList = folderPath.glob('*.'+exif)
        for i in fileList:
            #stname=i.stem
            filenames.append(i.stem+'.'+exif)
        return filenames

    def ReadDataFile(xlspath):
        """
        读取指定一文件的数据
        :param xlspath: excel文件物理路径
        :return: 返回当前文件的数据
        """
        #print(xlspath)
        objlist = []
        dfnonoe = pd.read_excel(io=xlspath, sheet_name='Sheet1', keep_default_na=False)
        dfnonoe1 = dfnonoe.dropna(axis=1)
        row1 = dfnonoe1.loc[0:0]  #第一行 标题, 有规则的,就不需要这种处理方式
        #print(row1['Unnamed: 2'])  # 社保明细
        #print(row1['Unnamed: 3'])  # 1月缴纳明细(元)
        yl = row1['Unnamed: 2']
        yll = yl.convert_dtypes()
        yc = row1['Unnamed: 3']
        ycc = yc.convert_dtypes()
        mm = ReadExcelData.RemoveStr(ycc[0]) #提取月份数据

        row2 = dfnonoe1.loc[1:1] #第二行
        yl2 = row2['Unnamed: 2']  #养老
        yll2 = yl2.convert_dtypes()
        yc2 = row2['Unnamed: 3']   #费用
        ycc2 = yc2.convert_dtypes()

        row3 = dfnonoe1.loc[2:2] #第三行
        yl3 = row3['Unnamed: 2']   #医疗
        yll3 = yl3.convert_dtypes()
        yc3 = row3['Unnamed: 3']   #费用
        ycc3 = yc3.convert_dtypes()
        objlist.append(Insurance.Insurance(yll2,ycc2,mm))
        objlist.append(Insurance.Insurance(yll3,ycc3,mm))
        return  objlist



    def RemoveStr(oldstr):
        """
        去除指定的字符串
        :param oldstr: 旧字符串
        :return: 新字符串
        """
        newstr = re.sub(r'月缴纳明细(元)', "", oldstr)  #月缴纳明细(元)
        return newstr


    def clearBlankLine(oldfile,newfile):
        """
        清除文件里面的空白行
        :param oldfile: 旧文件
        :param newfile: 新文件
        :return: none
        """
        file1 = open(oldfile, 'r', encoding='utf-8') # 要去掉空行的文件
        file2 = open(newfile, 'w', encoding='utf-8') # 生成没有空行的文件
        try:
            for line in file1.readlines():
                if line == '\n':
                    line = line.strip("\n")
                file2.write(line)
        finally:
            file1.close()
            file2.close()

    def excelcovert():
        """

        :return:
        """
        app=xw.App(visible=False,add_book=False)
        folderPath=Path('C:\\Users\\geovindu\\PycharmProjects\\pythonProject\\')
        fileList=folderPath.glob('*.xls')
        for i in fileList:
            newFilePath=str(i.with_suffix('.xlsx'))
            workbook=app.books.open(i)
            workbook.api.SavaAs(newFilePath,FileFormat=56)
            workbook.close()
        app.quit()

  

调用:

# This is a sample Python script.

# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
import xlrd
import xlwt
import xlwings as xw
import xlsxwriter
import openpyxl as ws
import pandas as pd
import pandasql
import os
import sys
from pathlib import Path
import re
import Insurance
import ReadExcelData



def print_hi(name):
    # Use a breakpoint in the code line below to debug your script.
    print(f'Hi, {name}')  # Press Ctrl+F8 to toggle the breakpoint.






# Press the green button in the gutter to run the script.
if __name__ == '__main__':
    print_hi('PyCharm,Geovin Du')
    #https://www.digitalocean.com/community/tutorials/pandas-read_excel-reading-excel-file-in-python
    #https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.convert_dtypes.html
    #https://www.geeksforgeeks.org/args-kwargs-python/
    insura=[]
    objlist=[]
    #excelcovert()
    s = '1123*#$ 中abc国'
    str = re.sub('[a-zA-Z0-9!#$%&\()*+,-./:;<=>?@,。?★、…【】《》?!^_`{|}~\s]+', "", s)
    # 去除不可见字符
    str = re.sub('[\001\002\003\004\005\006\007\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a]+',"", str)
    print(str)
    phone = "2004-959-559 # 这是一个电话号码"
    tt="1月缴纳明细(元)"
    newtt=re.sub(r'月缴纳明细(元)',"",tt)
    print(newtt)
    # 删除注释
    num = re.sub(r'#.*$', "", phone)
    print("电话号码 : ", num)

    xlspath1 = r'C:\Users\geovindu\PycharmProjects\pythonProject\1月.xls'
    xlspath2 = r'C:\Users\geovindu\PycharmProjects\pythonProject\2月.xls'
    xlspath3 = r'C:\Users\geovindu\PycharmProjects\pythonProject\3月.xls'
    xlspath4 = r'C:\Users\geovindu\PycharmProjects\pythonProject\4月.xls'
    xlspath5 = r'C:\Users\geovindu\PycharmProjects\pythonProject\5月.xls'
    xlspath6 = r'C:\Users\geovindu\PycharmProjects\pythonProject\6月.xls'
    xlspath7 = r'C:\Users\geovindu\PycharmProjects\pythonProject\7月.xls'
    xlspath8 = r'C:\Users\geovindu\PycharmProjects\pythonProject\8月.xls'
    xlspath9 = r'C:\Users\geovindu\PycharmProjects\pythonProject\9月.xls'
    xlspath10 = r'C:\Users\geovindu\PycharmProjects\pythonProject\10月.xls'
    xlspath11 = r'C:\Users\geovindu\PycharmProjects\pythonProject\11月.xls'
    xlspath12 = r'C:\Users\geovindu\PycharmProjects\pythonProject\12月.xls'

    xlspath13 = r'C:\Users\geovindu\PycharmProjects\pythonProject\1月0.xls'
    xlspath14 = r'C:\Users\geovindu\PycharmProjects\pythonProject\2月0.xls'

    dfnew = pd.read_excel(r'C:\Users\geovindu\PycharmProjects\pythonProject\1月.xls')


    #dfnew = dfnew.drop(columns=[0, 1],axis=1)
    #dfnew.dropna(axis=0, how="all", inplace=True)  # 删除excel空白行代码
    #dfnew.dropna(axis=1, how="all", inplace=True)  # 删除excel空白列代码
    #dfnew.to_excel(r'C:\Users\geovindu\PycharmProjects\pythonProject\1月.xls', "1")

    #注:axis = 0    表示操作excel行,axis = 1    表示操作excel列


    xls1 = pd.read_excel(io=xlspath1, sheet_name='Sheet1', index_col=(2, 3), skiprows=1,keep_default_na=False)  # 从第2列至第3列,省略第一行
    #xls1 = pd.read_excel(io=xlspath1, sheet_name='Sheet1')
    xls2 = pd.read_excel(io=xlspath2, sheet_name='Sheet1', index_col=(2, 3), skiprows=1,keep_default_na=False)  # 从第2列至第3列,省略第一行
    xls3 = pd.read_excel(io=xlspath13, sheet_name='Sheet1',keep_default_na=False)  # 人工去除空行空列
    xls4 = pd.read_excel(io=xlspath14, sheet_name='Sheet1',keep_default_na=False)  # 人工去除空行空列

    dulist=[]
    # 封装成类操作
    dulist1 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath1)
    dulist2 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath2)
    dulist3 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath3)
    dulist4 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath4)
    dulist5 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath5)
    dulist6 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath6)
    dulist7 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath7)
    dulist8 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath8)
    dulist9 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath9)
    dulist10 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath10)
    dulist11 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath11)
    dulist12 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath12)

    #dulist.append(dulist2)
    for Insurance.Insurance in dulist1:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist2:
         duobj=Insurance.Insurance
         #print(duobj)
         dulist.append(duobj)
    for Insurance.Insurance in dulist3:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist4:
         duobj=Insurance.Insurance
         #print(duobj)
         dulist.append(duobj)
    for Insurance.Insurance in dulist5:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist6:
         duobj=Insurance.Insurance
         #print(duobj)
         dulist.append(duobj)
    for Insurance.Insurance in dulist7:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist8:
         duobj=Insurance.Insurance
         #print(duobj)
         dulist.append(duobj)
    for Insurance.Insurance in dulist9:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist10:
         duobj=Insurance.Insurance
         #print(duobj)
         dulist.append(duobj)
    for Insurance.Insurance in dulist11:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist12:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)

    for Insurance.Insurance in dulist:
        duobj = Insurance.Insurance
        print(duobj)



    print("geovindu,*************")

    '''
    index_row = []
    # loop each row in column A
    for i in range(1, ws.max_row):
        # define emptiness of cell
        if ws.cell(i, 1).value is None:
            # collect indexes of rows
            index_row.append(i)

    # loop each index value
    for row_del in range(len(index_row)):
        ws.delete_rows(idx=index_row[row_del], amount=1)
        # exclude offset of rows through each iteration
        index_row = list(map(lambda k: k - 1, index_row))
    '''
    #改列名 https://stackoverflow.com/questions/35369382/delete-empty-row-openpyxl
    #xls1.rename(columns={'Unnamed: 0': 'new column name'}, inplace=True)

    print(xls1)

    print("****")
    print(xls2)
    print(xls3)
    print(xls4)
    print(xls1.columns.ravel())

    dfnonoe = pd.read_excel(io=xlspath1, sheet_name='Sheet1',keep_default_na=False)
    #dfnonoe1 = dfnonoe.loc[:, ~dfnonoe.columns.str.contains('^Unnamed')]
    #dfnonoe.rename(columns={'Unnamed: 3': '1月缴纳明细'}, inplace=True)
    dfnonoe1 = dfnonoe.dropna(axis=1)
    dfnonoe1.loc[2:2]
    print("none:",dfnonoe1)
    t=dfnonoe1.loc[0:0]
    #print(t)





    print(t['Unnamed: 2']) #社保明细
    print(t['Unnamed: 3']) #1月缴纳明细(元)
    yy=t['Unnamed: 3']
    print(yy) #.Replace('(元)','')
    #ynew='(元)'.join(filter(str.isalnum, yy))
    #re.sub('[a-zA-Z0-9'!"#$%&\'()*+,-./:;<=>?@,。?★、…【】《》?“”‘'![\\]^_`{|}~\s]+', "", yy)
    #ynew =re.sub('[a-zA-Z0-9'!"#$%&\'()*+,-./:;<=>?@,。?★、…【】《》?“”‘'![\\]^_`{|}~\s]+',"",yy)
    #print(ynew)
    t1=dfnonoe1.loc[1:1]

    print(t1['Unnamed: 2']) #养老
    yl=t1['Unnamed: 2']
    yll=yl.convert_dtypes()
    print(yll)
    print(t1['Unnamed: 3']) #10
    yc=t1['Unnamed: 3']
    ycc=yc.convert_dtypes()
    print(type(yc))
    t3=dfnonoe1.loc[2:2]
    print(t3['Unnamed: 2']) #医疗
    ll=t3['Unnamed: 2']
    lll=ll.convert_dtypes()
    print(lll)
    print(t3['Unnamed: 3']) #20
    lc=t3['Unnamed: 3']
    lcc=lc.convert_dtypes()
    print(lcc)
    f=t['Unnamed: 3']
    print(type(f))  #pandas.core.series.Series
    print(f.convert_dtypes())
    print(f[0])
    print(ReadExcelData.ReadExcelData.RemoveStr(f[0]))
    ff=ReadExcelData.ReadExcelData.RemoveStr(f[0])
    print(ff)
    #m=re.sub(r'月缴纳明细(元)',"",f) #ReadExcelData.RemoveStr(t['Unnamed: 3'])

    #objins = Insurance(yll,ycc,ff)
    insura.append([yll,ycc,ff])
    insura.append([lll,lcc,ff])
    for i in insura:
        print(i[0],i[1],i[2])

    #print(objins)
    #Insurance.Insurance(yll,ycc,ff)
    #Insurance.Insurance(lll,lcc,ff)
    '''
    objlist.append(Insurance.Insurance(yll,ycc,ff))
    objlist.append(Insurance.Insurance(lll,lcc,ff))
    for Insurance.Insurance in objlist:
         obj=Insurance.Insurance
         print(obj)
   '''

    print("**************")

    df = pd.DataFrame()
    df1=pd.DataFrame()
    out = pd.concat([xls1,xls2])
    out1=pd.concat([xls3,xls4])
    df = pd.concat([df, out])
    df1=pd.concat([df1,out1])
    print(xls3['1月缴纳明细(元)'])
    sum=0;
    dl=xls3['1月缴纳明细(元)']
    dl2=xls4['2月缴纳明细(元)']
    for ddd in dl:
        sum=sum+ddd

    print(dl[0])  #0为养老
    print(dl[1])  #1为医疗
    print("sum:",sum)
    #df3 = df.dropna(axis=1, how='any', thresh=None, subset=None, inplace=False)  # 删除全部为空的行
    #df4 = df.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)  # 删除全部为空的行
    # 设置子集:删除第5、6、7行存在空值的列
    #print(df.dropna(axis=1, how='any', subset=[0, 1]))
    print(df1)
    print(df)
    print(df.shape)
    print(df.columns)
    print(df.index)
    print(df1)
    print(df1.shape)
    print(df1.columns)
    print(df1.index)
    print(df1.groupby(['社保明细']).sum())

    print(df.groupby(['社保明细']).sum())


    #df.name='社保明细'
    #df.loc[0]
    #df.loc[0:1]
    for i, j in df.iterrows():
        print(i, j)
        print()
    for i in df.itertuples():
        print(i)
    # 查询某文件夹下的文件名
    folderPath=Path(r'C:\\Users\\geovindu\\PycharmProjects\\pythonProject\\')
    fileList=folderPath.glob('*.xls')
    for i in fileList:
        stname=i.stem
        print(stname)
    # 查询文件夹下的文件  print(os.path.join(path, "User/Desktop", "file.txt"))
    dufile=ReadExcelData.ReadExcelData.ReadFileName(folderPath,'xls')
    for f in dufile:
        print(os.path.join(folderPath,f))


# See PyCharm help at https://www.jetbrains.com/help/pycharm/

  

标签:ReadExcelData,duobj,python,excel,read,print,import,Unnamed,Insurance
From: https://www.cnblogs.com/geovindu/p/17478621.html

相关文章

  • python+uiautomator2判断app是否进入到闪屏广告页面
    前提背景:app内部存在多处广告,需要进行进行自动化:1.查看app是否成功跳转了页面2.页面是否空白3.大致经历的耗时主要思路如下:点击前进行截图操作,点击后进行判断判断图片是否空白defis_blank(image_path,gray_value=250,threshold=0.9):"""函数会计算一幅图像中......
  • Python调用C/C++动态库
    一、编译C++代码并封装成动态库1、创建编译dll文件的项目,在上面的官网介绍的更详细,这里就不多做介绍了。注意在vs之中新建一个项目,项目选择动态链接库(DLL)2、2.在源文件中添加cpp文件并写好函数#include<iostream>#defineMATHLIBRARY_APIextern"C"__declspec(dllexport)......
  • Python基础之subprocess模块、hashlib模块、日志模块
    subprocess模块tasklist:列举出来文件进程命令"""1.以后我们可以用自己的电脑连接上别人的电脑(socket)2.通过subprocess可以在别人的计算机上执行我们想要执行的命令3.把在别人计算机上执行的结果给返回过来"""importsubprocessimportsubprocessres=subprocess.P......
  • python 之logging 模块
    一、日志的简单使用1、什么是日志记录你的代码在执行过程中的一些变化(记录的是一些有意义的变化)2、日志的5个等级importlogginglogging.debug('debugmessage')#10logging.info('infomessage')#20logging.warning('warningmessage')#30logging.error('errorm......
  • python 3.11.4 安装教程
    python官网 WelcometoPython.org.1.下载python进入官网点击Downloads找到3.11.4版本 点击Download  找到对应的电脑版本进行下载 2.安装python(1)双击下载好的python-3.11.4-amd64.exe(2)勾选AddPython3.7toPATH,再点击CustomizeinstallationInstallno......
  • Python和Anaconda的版本对应关系
    原文链接Python和Anaconda的版本对应关系如下:PackagesincludedinAnaconda2022.10for64-bitLinuxonx86_64CPUswithPython3.10PackagesincludedinAnaconda2022.10for64-bitLinuxonARMv8CPUswithPython3.10PackagesincludedinAnaconda2022.10for6......
  • 7.excel寻找替换技巧
    ?代表单个字符提示: 可以在搜索条件中使用 通配符 -问号(?)、星号(*)、字号(~)。使用问号(?)查找任意单个字符,例如,s?t可找到"sat"和"set"。使用星号(*)查找任意多个字符,例如,s*d可找到"sad"和"started"。使用字号(~)后跟?、*或~查找问号、星号或其他代字-例如fy91......
  • Operating System Process and Thread
    ProcessDescriptionandControl3.1:Whatisaninstructiontrace?Aninstructiontraceforaprogramisthesequenceofinstructionsthatexecuteforthatprocess.3.2:Explaintheconceptofaprocessandmarkitsdifferencesfromaprogram.(GPT)Aproc......
  • pycharm打包python项目为exe执行文件
    1.先把所有需要用到的,引用的文件放在同一个文件夹(新建)下面,修改主要2.生成.spec文件,根据这个文件来生成exe可执行文件。生成.spec的命令如下:pyi-makespecXXX.py命令,这里XXX.py为主程序文件,该命令会生成一个XXX.spec文件;如果需要使用ico,则可以使用pyi-makespecXXX.py-imyicon......
  • WinForm下DataGridView导出Excel的实现
    WinForm下DataGridView导出Excel的实现 1.说明:导出的效率说不上很高,但至少是可以接收的.参考网上很多高效导出Excel的方法,实现到时能够实现的,导出速度也很快,不过缺陷在与不能很好的进行单元格的格式化,比如上图中的"拼音码"字段中的值"000000000012120",在导出后就显示"1212......