1.算法仿真效果 matlab2022a仿真结果如下:
2.算法涉及理论知识概要 三维姿态估计是计算机视觉领域中一个非常重要的问题,它在许多应用中都具有重要的作用,如人机交互、姿态识别、动作捕捉等。在过去的几年中,随着深度学习技术的发展,基于深度学习的方法取得了很大的进展,但是这些方法仍然存在许多问题,如对于遮挡和复杂姿态的处理等。 二维人体图像到三维姿态的转换一直是计算机视觉领域中的难题。在本文中,我们将介绍一种新的方法,该方法使用基于凸松弛的方法来估计三维姿态。凸松弛是一种数学优化方法,它可以用来解决许多实际问题,包括姿态估计。我们还将使用遗传优化算法来进一步提高凸松弛算法的性能。 凸松弛是一种数学优化方法,它可以用来解决许多实际问题,包括姿态估计。在本文中,我们将使用凸松弛算法来估计三维姿态。凸松弛算法使用了一种强大的数学工具,称为凸优化,该工具可以在不知道准确模型参数的情况下,通过最小化目标函数来估计模型参数。凸优化是一种非常有效的优化方法,因为它可以保证全局最优解。 基于遗传优化的凸松弛算法,凸松弛算法是一种非常强大的数学工具,但是在实际应用中,它仍然存在许多问题,如局部最优解和收敛速度慢等。为了解决这些问题,我们将引入遗传优化算法来进一步提高凸松弛算法的性能。 遗传优化算法是一种基于生物学进化理论的优化算法,它通过模拟自然选择和遗传变异来搜索最优解。在本文中,我们将使用遗传优化算法来搜索凸松弛算法的最优解。具体来说,我们将使用遗传优化算法来搜索凸松弛算法的参数,以使目标函数最小化。使用遗传优化算法可以加快凸松弛算法的收敛速度,并且可以更好地避免局部最优解。提出的基于遗传优化的凸松弛算法的性能。我们将我们的方法与一些最新的三维姿态估计方法进行比较,包括基于深度学习的方法和基于传统优化方法的方法。
遗传优化长度为L的n个二进制串bi(i=1,2,…,n)组成了遗传算法的初解群,也称为初始群体。在每个串中,每个二进制位就是个体染色体的基因。根据进化术语,对群体执行的操作有三种:
1.选择(Selection)
这是从群体中选择出较适应环境的个体。这些选中的个体用于繁殖下一代。故有时也称这一操作为再生(Reproduction)。由于在选择用于繁殖下一代的个体时,是根据个体对环境的适应度而决定其繁殖量的,故而有时也称为非均匀再生(differential reproduction)。
2.交叉(Crossover)
这是在选中用于繁殖下一代的个体中,对两个不同的个体的相同位置的基因进行交换,从而产生新的个体。
3.变异(Mutation)
这是在选中的个体中,对个体中的某些基因执行异向转化。在串bi中,如果某位基因为1,产生变异时就是把它变成0;反亦反之。
4.全局最优收敛(Convergence to the global optimum)
当最优个体的适应度达到给定的阀值,或者最优个体的适应度和群体适应度不再上升时,则算法的迭代过程收敛、算法结束。否则,用经过选择、交叉、变异所得到的新一代群体取代上一代群体,并返回到第2步即选择操作处继续循环执行。
3.MATLAB核心程序
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
%初始spread
mu = 1;
%根据遗传算法进行参数的拟合
MAXGEN = 20;
NIND = 50;
Chrom = crtbp(NIND,1*10);
%14个变量的区间
Areas = [0.5;
1.5];
FieldD = [rep([10],[1,1]);Areas;rep([0;0;0;0],[1,1])];
LR = zeros(NIND,1);
MU2 = zeros(MAXGEN,1);
gen = 0;
for a=1:1:NIND
a
LR(a) = mu;
%计算对应的目标值
errs = func_obj(LR(a));
E = errs;
J(a,1) = E;
end
Objv = (J+eps);
gen = 0;
while gen < MAXGEN;
gen
P1 = 0.9;
P2 = 1-P1;
FitnV=ranking(Objv);
Selch=select('sus',Chrom,FitnV);
Selch=recombin('xovsp', Selch,P1);
Selch=mut( Selch,P2);
phen1=bs2rv(Selch,FieldD);
for a=1:1:NIND
if gen == 1
LR(a) = mu;
else
LR(a) = phen1(a,1);
end
%计算对应的目标值
errs = func_obj(LR(a));
E = errs;
JJ(a,1) = E;
end
Objvsel=(JJ+eps);
[Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);
gen=gen+1;
%保存参数收敛过程和误差收敛过程以及函数值拟合结论
MU2(gen) = mean(LR);
Error(gen) = mean(JJ);
deltaf = Error(gen);
end
标签:仿真,松弛,Selch,算法,个体,二维,matlab,优化,gen
From: https://blog.51cto.com/matworld/6420139