pandas 是基于NumPy 的一种工具, 名字很卡哇伊,来源是由“ Panel data”(面板数据,一个计量经济学名词)两个单词拼成的。pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。主要应用于处理大型数据集。数据处理速度算是最大的特色,剩下的就是个python版的excel了吧。
API文档:http://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html
数据结构:
Series:一种一维数组,和 NumPy 里的数组很相似。事实上,Series 基本上就是基于 NumPy 的数组对象来的。和 NumPy 的数组不同,Series 能为数据自定义标签,也就是索引(index),然后通过索引来访问数组中的数据。
DataFrame:二维的表格型数据结构。很多功能与R中的data.frame类似。可以将DataFrame理解为Series的容器。
Panel :三维的数组,可以理解为DataFrame的容器。
例如:
import numpy as np
import pandas as pd
datafile='.\opt\list.csv'
outfile='.\opt\output.csv'
df = pd.DataFrame(pd.read_csv(datafile,encoding="utf_8"))#导入文件
print(df.shape)#输入维度
print(df.head())#输出默认前10行
df.pop('video')#删除列
print(df['type'])#输出列
df['type'].replace('科技','科学',inplace = True)#列替换
df.to_csv(outfile,encoding="utf_8")#输出文件
list.csv:
output.csv:
下面介绍Apriori算法:
Apriori算法是常用的用于挖掘出数据关联规则的算法,算法的目标是找到最大的K项频繁集,采用了迭代的方法,先搜索出候选1项集及对应的支持度,剪枝去掉低于支持度的1项集,得到频繁1项集。然后对剩下的频繁1项集进行连接,得到候选的频繁2项集,筛选去掉低于支持度的候选频繁2项集,得到真正的频繁二项集,以此类推,迭代下去,直到无法找到频繁k+1项集为止,对应的频繁k项集的集合即为算法的输出结果。
算法流程:
1)扫描整个数据集,得到所有出现过的数据,作为候选频繁1项集。k=1,频繁0项集为空集。
2)挖掘频繁k项集
a) 扫描数据计算候选频繁k项集的支持度
b) 去除候选频繁k项集中支持度低于阈值的数据集,得到频繁k项集。如果得到的频繁k项集为空,则直接返回频繁k-1项集的集合作为算法结果,算法结束。如果得到的频繁k项集只有一项,则直接返回频繁k项集的集合作为算法结果,算法结束。
c) 基于频繁k项集,连接生成候选频繁k+1项集。
3) 令k=k+1,转入步骤2。
参考代码https://spaces.ac.cn/archives/3380
#-*- coding: utf-8 -*-
from __future__ import print_function
import pandas as pd
d = pd.read_csv('./opt/test.csv',header=None, dtype = object)
print(u'\n转换原始数据至0-1矩阵...')
import time
start = time.clock()
ct = lambda x : pd.Series(1, index = x)
b = map(ct, d.values)
d = pd.DataFrame(list(b)).fillna(0)
d = (d==1)
end = time.clock()
print(u'\n转换完毕,用时:%0.2f秒' %(end-start))
print(u'\n开始搜索关联规则...')
del b
support = 0.06 #最小支持度
confidence = 0.75 #最小置信度
ms = '--' #连接符,用来区分不同元素,如A--B。需要保证原始表格中不含有该字符
#自定义连接函数,用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):
x = list(map(lambda i:sorted(i.split(ms)), x))
l = len(x[0])
r = []
for i in range(len(x)):
for j in range(i,len(x)):
if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:
r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))
return r
#寻找关联规则的函数
def find_rule(d, support, confidence):
import time
start = time.clock()
result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果
support_series = 1.0*d.sum()/len(d) #支持度序列
column = list(support_series[support_series > support].index) #初步根据支持度筛选
k = 0
while len(column) > 1:
k = k+1
print(u'\n正在进行第%s次搜索...' %k)
column = connect_string(column, ms)
print(u'数目:%s...' %len(column))
sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数
#创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).T
support_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度
column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选
support_series = support_series.append(support_series_2)
column2 = []
for i in column: #遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?
i = i.split(ms)
for j in range(len(i)):
column2.append(i[:j]+i[j+1:]+i[j:j+1])
cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列
for i in column2: #计算置信度序列
cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])]
for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选
result[i] = 0.0
result[i]['confidence'] = cofidence_series[i]
result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]
result = result.T.sort_values(['confidence','support'], ascending = False) #结果整理,输出
end = time.clock()
print(u'\n搜索完成,用时:%0.2f秒' %(end-start))
print(u'\n结果为:')
print(result)
return result
find_rule(d, support, confidence).to_csv('./opt/out.csv')
测试文本:https://spaces.ac.cn/usr/uploads/2015/07/3424358296.txt
推荐参考博客:
https://www.jianshu.com/p/a77b0bc736f2
https://spaces.ac.cn/archives/3380
标签:python,series,support,Apriori,项集,频繁,ms,print,pandas From: https://blog.51cto.com/u_15937541/6410104