首页 > 编程语言 >第十四届蓝桥杯大赛青少组全国总决赛初级组C++C++题解

第十四届蓝桥杯大赛青少组全国总决赛初级组C++C++题解

时间:2023-05-30 15:14:03浏览次数:59  
标签:输出 正整数 数字 10 int 题解 样例 C++ 蓝桥

第十四届蓝桥杯大赛青少组全国总决赛初级组\(C++\)题解

第一题

给定一个十进制正整数\(N(1≤N≤10^9)\),请从小到大输出\(1\)~\(N\)之间(含\(1\)和\(N\))所有满足以下要求的数:

  1. 这个数转换为八进制后是一个回文数;

  2. 这个数是一个平方数。

例如:\(N = 20\),在\(1\)~\(20\)之间满足要求的数有\(1、4、9\),因为有,

\(1\)转换为八进制为\(1\),是一个回文数;且\(1 = 1^2\),是一个平方数;

\(4\)转换为八进制为\(4\),是一个回文数;且\(4 = 2^2\),是一个平方数;

\(9\)转换为八进制为\(11\),是一个回文数;且\(9 = 3^2\),是一个平方数。

故输出1 4 9

输入描述

输入一个十进制正整数\(N(1≤N≤10^9)\)

输出描述

输出一行,包含若干个十进制正整数,表示满足题目要求的数。结果从小到大输出,两个正整数之间用一个空格隔开

样例输入

20

样例输出

1 4 9

题目解析

首先定义两个辅助函数:is_octal_palindrome用于检查一个数转换为八进制后是否为回文数,is_square用于检查一个数是否为平方数。在main函数中,我们遍历1n之间的所有整数,检查它们是否满足题目要求,如果满足则输出

\(Code\)

#include <bits/stdc++.h>
using namespace std;

// 判断8进制回文
bool is_octal_palindrome(int n) {
    string s1 = "";
    while (n) {
        s1 += to_string(n % 8);
        n /= 8;
    }
    string s2 = s1;
    reverse(s2.begin(), s2.end());
    return s1 == s2;
}

// 判断完全平方数
bool is_square(int n) {
    int s = (int)sqrt(n);
    return s * s == n;
}

int main() {
    int n;
    cin >> n;

    for (int i = 1; i <= n; i++)
        if (is_octal_palindrome(i) && is_square(i))
            cout << i << " ";
    return 0;
}

由于\(n\)的数据范围太大,最多\(1e9\),所以,很明显\(O(N)\)的复杂度也会\(TLE\)掉一些测试样例,实测\(83\)分,需要进一步优化,你个蓝桥杯,还是初级组,还是第一题,上来就这么难是不是有点过了??

为了优化代码,我们可以减少遍历的次数。因为我们要找的数是平方数,所以我们只需要遍历\(1\)到\(sqrt(n)\)之间的整数,然后检查它们的平方是否满足八进制回文数的条件。这样可以显著减少遍历次数。以下是优化后的代码:

\(Code\)

#include <bits/stdc++.h>
using namespace std;

bool is_octal_palindrome(int n) {
    string s1 = "";
    while (n) {
        s1 += to_string(n % 8);
        n /= 8;
    }
    string s2 = s1;
    reverse(s2.begin(), s2.end());
    return s1 == s2;
}

int main() {
    int n;
    cin >> n;

    int s = (int)sqrt(n);
    for (int i = 1; i <= s; i++) {
        int s2 = i * i;
        if (is_octal_palindrome(s2)) cout << s2 << " ";
    }
    return 0;
}

第二题

从金星探测器传回来一组测量数据,这是一个长度为\(N(1≤N≤1000000)\)的整数数列,数列中的每个整数代表某一种化学成分(相同的整数代表相同的化学成分)。

主要成分:指在包含的所有化学成分中比例超过一半(\(N÷2\)的结果向下取整)的成分。

现在要判断其是否有主要成分;如果有,其主要成分是哪一种?

例如:

当\(N=7\),整数数列为1 2 3 2 2 1 2,其中成分\(2\)有\(4\)个,超过了\(7\)的一半(\(7\)的一半向下取整为\(3\)),所以主要成分是\(2\)。

当\(N=6\),整数数列为1 102 31 31 1 102,其中的每一种成分都只有\(2\)个,未超过\(6\)的一半(\(6\)的一半为\(3\)),所以没有主要成分。

输入描述

第一行输入一个正整数\(N(1≤N≤1000000)\),表示数列长度

第二行输入\(N\)个整数(\(1\)≤整数≤\(2×10^9\)),每个整数表示一种化学成分,两个整数之间用一个空格隔开

输出描述

输出一行,如果存在主要成分,则输出代表主要成分的整数,否则,输出No

**样例输入 **

7 1 2 3 2 2 1 2 

样例输出

2

题目解析

好多孩子一看这题简单啊,就是一个桶嘛,所以很快就有了下面的代码:

\(Code\)

#include <bits/stdc++.h>

using namespace std;
const int N = 1e6 + 10;
int a[N];
int b[N]; // 开1e6不够,开2e9就会MLE,用桶是不行的
int main() {
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++) cin >> a[i], b[a[i]]++;
    bool flag = false;
    for (int i = 1; i <= n; i++)
        if (b[a[i]] > n / 2) {
            cout << a[i];
            flag = true;
            break;
        }

    if (!flag) cout << "No";

    return 0;
}

但是,你看看数据范围啊,它的整数上限值是\(2\times 10^9\),如果按这个来设计桶的话,那肯定\(MLE\)啊! 需要\(Hash\)表处理,不能直接用桶来模拟:

\(Code\)

#include <bits/stdc++.h>

using namespace std;
const int N = 1e6 + 10;
int a[N];
unordered_map<int, int> _map;
int main() {
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++) cin >> a[i], _map[a[i]]++;
    bool flag = false;
    for (int i = 1; i <= n; i++)
        if (_map[a[i]] > n / 2) {
            cout << a[i];
            flag = true;
            break;
        }

    if (!flag) cout << "No";

    return 0;
}

第三题

编程实现:简单算术题

题目描述

给定一道 没有括号四则混合运算算术题(可能包含多余的空格),请编程计算出结果。

运算规则如下:

既有乘、除法又有加、减法的,要先算乘除法,再算加减法

同级运算时,要从左往右按顺序计算

所有除法运算的结果都只保留整数部分(直接舍弃小数部分)

例如:当算术题为 \(2 + 3*4 - 10/6 + 1/24\)时,优先计算乘除法,有\(3*4=12,10/6=1,1/24=0\);然后再计算加减法,\(2+3*4-10/6+1/24=2+12-1+0=13\),故输出\(13\)。

输入描述

输入一个字符串,表示算术题,\(5\)≤字符串长度≤\(100000\),字符串中只包含数字字符以及“+”、“-”、“*”、“/”运算符,不含括号可能包含空格

算式中的运算数范围:\(1\)≤运算数≤\(200\)。

输出描述

输出一个整数,表示算术题的计算结果。

题目数据保证算式的每一步运算的结果都在\(-2×10^9\)~\(2×10^9\)之间。

样例输入

2+3*4-10/6+1/24 

样例输出

13

这就是一道用两个栈(运算符栈,数字栈)的表达式求值问题的裸题,如果讲过,孩子的电脑里有这道题,可以轻松\(AC\),否则,就是\(0\)分。

\(Code\)

#include <bits/stdc++.h>
using namespace std;

stack<int> stk;
stack<char> op;

unordered_map<char, int> g{{'+', 1}, {'-', 1}, {'*', 2}, {'/', 2}};

void eval() {
    int a = stk.top();
    stk.pop();

    int b = stk.top();
    stk.pop();

    char p = op.top();
    op.pop();

    int r;

    if (p == '+') r = b + a;
    if (p == '-') r = b - a;
    if (p == '*') r = b * a;
    if (p == '/') r = b / a;

    stk.push(r);
}

int main() {
    string s;
    getline(cin, s);

    for (int i = 0; i < s.size(); i++) {
        if (s[i] == ' ') continue; // 过滤掉空格
        if (isdigit(s[i])) {
            int x = 0;
            while (i < s.size() && s[i] >= '0' && s[i] <= '9') {
                x = x * 10 + s[i] - '0';
                i++;
            }
            i--;

            stk.push(x);
        }

        else if (s[i] == '(')
            op.push(s[i]);
        else if (s[i] == ')') {
            while (op.top() != '(') eval();
            op.pop();
        } else {
            while (op.size() && g[op.top()] >= g[s[i]]) eval();
            op.push(s[i]);
        }
    }
    while (op.size()) eval();

    printf("%d\n", stk.top());
    return 0;
}

第四题

编程实现:数独填数

数独是源自\(18\)世纪瑞士的一种数学游戏。玩家需要根据\(9×9\)网格上的已知数字,将剩余的所有空格填上数字,使得\(9×9\)网格上每一行、每一列及每一个\(3×3\)方块(粗线)内的数字均包含\(1\)~\(9\),并且数字不重复。

这个数独可以使用如下\(9×9\)的字符方阵表示(空格用“.”表示):

输入样例

17.5..8..
.52.1....
.....759.
.8...94.3
.197.4..8
7......15
4.1...6..
3...2..59
...96..3.

输出样例

174593826
952816347
638247591
286159473
519734268
743682915
491375682
367428159
825961734

\(Code\)

回溯法,学过,电脑里有,就是轻松\(AC\),否则,累死也白扯

#include <bits/stdc++.h>
using namespace std;

const int N = 9;
int g[N][N];

int isValid(int r, int c, int x) {
    // 同行,同列是不是存在同样的数字x
    for (int i = 0; i < 9; i++)
        if (g[r][i] == x || g[i][c] == x) return 0;

    // 找出3X3的小方块开始行和开始列,也就是所在块左上角坐标
    int row = r / 3 * 3;
    int col = c / 3 * 3;
    for (int i = 0; i < 3; i++)
        for (int j = 0; j < 3; j++)
            if (g[row + i][col + j] == x)
                return 0;
    return 1;
}

int dfs() {
    for (int r = 0; r < 9; r++) {
        for (int c = 0; c < 9; c++) {
            if (g[r][c] == 0) {
                for (int x = 1; x <= 9; x++) {
                    if (isValid(r, c, x)) {
                        g[r][c] = x;
                        if (dfs()) return true;
                        g[r][c] = 0;
                    }
                }
                return 0;
            }
        }
    }
    return 1;
}

int main() {
    for (int i = 0; i < 9; i++)
        for (int j = 0; j < 9; j++) {
            char x;
            cin >> x;
            if (x != '.') g[i][j] = x - '0';
        }

    dfs();

    for (int i = 0; i < 9; i++) {
        for (int j = 0; j < 9; j++) cout << g[i][j];
        cout << endl;
    }
    return 0;
}

第五题

编程实现:数学实验

题目描述

老师在黑板上写出了一个正整数数列,让所有同学都来做一个数学实验,要求如下:

这组数总共不超过\(500000\)个,每个数的大小范围在\(1\)~\(80\)之间;

要从这组数中找出两个相邻且相同的数,删掉其中一个数,剩下的一个数加\(1\)(例如:两个相邻的\(6\),变成一个\(7\));

重复执行第\(2\)步;

当操作无法继续进行时,实验结束,此时,实验结果就是这组数里面最大的数

注意:不同的实验方案得到的最大数不同。

现在给定了一个正整数数列,请你编写程序计算出能够得到的实验结果最大是多少。

例如:

当\(N=6\),这个正整数数列是 \(1、2、2、2、3、4\)时,得到最大数的方法如下:

先将后面两个\(2\)变成一个\(3\),然后\(3\)和\(3\)变成\(4\),最后\(4\)和\(4\)变成\(5\)。可以证明,没有其它更好的方案,故输出\(5\)。

输入描述

第一行输入一个正整数\(N(1≤N≤500000)\)

第二行输入\(N\)个正整数(\(1\)≤正整数≤\(80\)),相邻两个数之间用一个空格隔开

输出描述

输出一个正整数,表示实验结束后能够得到的最大的实验结果

样例输入

6 1 2 2 2 3 4 

样例输出

5

\(Code\)

#include <bits/stdc++.h>

using namespace std;

const int N = 500010;
int a[N]; // 原数列

// DP数组
int f[N][82][2];
/*

考虑线性DP:

f[i][j][k]:

状态表示:所有 前i个数字,最后一个位置是数字j(可能是变更+1过,也可能是没有变更过)
k=0表示是未变更,k=1表示经过了相邻+相等+加1变更

属性:最大值

Q:为什么要开一个三维数组进行DP打表?为什么不是一维或是二维?
答:没有人闲着没事有一维够用开二维,有二维够用开三维,给自己找麻烦那是有病。
我们先假设开一维,代表的含义就是前i个数字最终符合条件可以获取到的最大值。来思考一下f[i]和f[i+1]之间的关系
此时,我们会发现,无法表示什么相邻,变更,不变更,状态不够清晰,需要把状态细化一下。

开个二维试试:f[i][j]
那就是表示前i个数字,最后一个数字是j,问题马上就来了:因为最后一位是j,可能是原来不是,是因为两个相邻一样的数字
拼出来的j,也可能是原始的j,这两个都是可能的,都应该保留下来,为后面的递推做地基,现在,我们把它们两个混淆了,就相
当于损毁了一个,导致后续的递推缺少了基础,明显也是不对的。

开个三维试试:f[i][j][k]

表示前i个数字,最后一个数字是j,这个j,如果k=0就代表原来就是j,如果k=1,就表示是因为相邻后相等+1等到的j。

这时,我们发现状态还是非常清晰的,任何一个状态的来龙去脉都可以不重不漏的描述清楚,没有丢失状态。

状态转移:
(1) 当我们位于第i个数字面前时,表示前i-1个已经处理完毕,对应的DP都已经填充利索了。
(2) 如果当前数字a[i],与前一位的数字j不相等,那么很显然,不能形成与前一位数字相邻且相等,
f[i][a[i]][0]=max({f[i][a[i]][0],f[i-1][j][0],f[i-1][j][1]})
此处有的同学可能有疑问:前一位也不可能是所有的j∈(1,80)吧?是的,前一位的j只可能有2个数字,其它的肯定是0,这里我嫌麻烦,就直接枚举了81个数字
,因为没有填充的肯定是0,在求最大值的题目中,0是不会成为答案的,不会造成影响。

(3)如果当前数字a[i],与前一位的数字j相等(这个j可能是变异过,也可能是原始的),那么与相位相邻可以产生+1的效果,有可能会使得最大值更新。
f[i][j + 1][1] = max({f[i][j + 1][1], f[i - 1][j][0], f[i - 1][j][1], f[i][j + 1][0], j + 1});

答案:
走完前n个数字,并且,枚举每一个可能结尾的数字j,变更或不变更的都可能是答案,需要一次枚举即可。
*/

/*
测试用例I
6
1 2 2 2 3 4
答案
5

测试用例II
6
1 2 2 1 3 4
答案
5

测试用例III
5
2 1 2 1 1
答案
3

测试用例IV
4
80 79 79 80
答案
81


测试用例V
6
2 3 4 4 4 5
答案
6

测试用例VI
6
2 3 4 6 5 5
答案
7

*/
int main() {
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++) cin >> a[i];

    // 初始化,前1个数字中,以a[1]结尾的状态,没有经历变更,最大值是a[1]
    f[1][a[1]][0] = a[1];

    // DP
    // 以每个数字位置为阶段
    for (int i = 2; i <= n; i++) {
        int k = a[i];

        for (int j = 1; j <= 81; j++) {
            // 每一个前序可能状态,都可以通过加入a[i]时更新到新的状态
            f[i][k][0] = max({f[i][k][0], f[i - 1][j][0], f[i - 1][j][1], k});
            // 如果发现相邻且相等的情况,合并后+1
            if (k == j)
                f[i][j + 1][1] = max({f[i][j + 1][1], f[i - 1][j][0], f[i - 1][j][1], f[i][j + 1][0], j + 1});
        }
    }
    // 结果
    int res = 0;

    for (int i = 1; i <= 81; i++)
        res = max({res, f[n][i][0], f[n][i][1]});

    cout << res << endl;
    return 0;
}

标签:输出,正整数,数字,10,int,题解,样例,C++,蓝桥
From: https://www.cnblogs.com/littlehb/p/17443273.html

相关文章

  • ImportError: /lib64/libstdc++.so.6: version `CXXABI_1.3.8' not found
    [root@localhostPaddleOCR]#strings/lib64/libstdc++.so.6|grep'CXXABI'CXXABI_1.3CXXABI_1.3.1CXXABI_1.3.2CXXABI_1.3.3CXXABI_1.3.4CXXABI_1.3.5CXXABI_1.3.6CXXABI_1.3.7CXXABI_TM_1[root@localhostPaddleOCR]#find/-name"libstdc++.......
  • gdb调试c++多线程死锁问题初步
    https://blog.csdn.net/zsiming/article/details/126695393 总结:psaux|grepfilename //找出进程IDtop-HpPID //列出进程号为PID下的所有线程gdbatattchPID //用gdb调试正在运行的进程(进程号为PID)(需要sudo权限)threadapplyallbt //这里涉及2个命令:thr......
  • C++结构体对齐详解
    内存对齐是一种提高内存访问速度的策略,CPU在访问未对齐的内存可能需要经过两次的内存访问,而经过内存对齐一次就可以了cout<<"char:"<<sizeof(char)<<endl;cout<<"int:"<<sizeof(int)<<endl;cout<<"short:"<<sizeof(short)<<endl;cout&l......
  • c++11: all_of 、 any_of 和 none_of
    有效的字母异位词classSolution{public:boolisAnagram(strings,stringt){if(s.size()!=t.size())returnfalse;intans[26]={0};for(auto&ch:s){++ans[ch-'a'];}for(auto&......
  • C/C++学生成绩管理系统[2023-05-30]
    C/C++学生成绩管理系统[2023-05-30]学生成绩管理系统设计----高级语言课程设计题目问题描述:设学生信息包括:学号、姓名、期末成绩、平时成绩,对学生的学习成绩信息进行管理。设计要求:实现学生信息的录入、修改、插入、删除、查询、计算总评成绩、根据总评成绩排序和划分等级、......
  • c++类型转换
    C语言中的类型转换C语言和C++都是强类型语言,如果赋值运算符左右两侧变量的类型不同,或形参与实参的类型不匹配,或返回值类型与接收返回值的变量类型不一致,那么就需要进行类型转换。C语言中有两种形式的类型转换,分别是隐式类型转换和显式类型转换:隐式类型转换:编译器在编译阶段自......
  • 山东二轮省集题解合集
    山东二轮省集题解合集Day1A打表,发现答案是\(\prod\limits_{i=1}^n(2i-1)\)。证明可以考虑拿GF推。首先有dp,\(f(i,j)\)表示到第\(i\)个括号当前左括号减右括号的个数为\(j\),转移是简单的\(f(i,j)=f(i,j+1)+f(i,j-1)\times(j-1)\)把\(f(i,j)\)写成一个形式幂级......
  • 【蓝桥杯集训·每日一题】AcWing 4496. 吃水果
    写在前面本人CSDN博客主页:这里一、题目1、原题链接4496.吃水果2、题目描述n个小朋友站成一排,等着吃水果。一共有m种水果,每种水果的数量都足够多。现在,要给每个小朋友都发一个水果,要求:在所有小朋友都拿到水果后,恰好有k个小朋友拿到的水果和其左边相邻小朋友拿到的水果不同(最左......
  • C++ Primer 第一、二章 C++基础,变量和基本类型
    一、C++基础<iostream>包含两个基础类型,istream-输入流和ostrea-输出流。标准库定义了四个IO对象cin-标准输入(istream),cout-标准输出(o),cerr-标准错误(o),clog-用来输出程序运行时的一般性信息(o)。 #include<iostream>intmain(){std::cout<<"Enter"<<std:......
  • 欢乐结训赛题解
    欢乐结训赛题解A题目链接题目大意给你一个字符串,让你求字符串中最大的字母在字母表中排第几例如codeforces中s的是最大的s在字母表中排19位代码#include<bits/stdc++.h>usingnamespacestd;constintN=2e5+10;constintmod=1e9+7;voidsolve()......