首页 > 编程语言 >程序6种性能优化

程序6种性能优化

时间:2023-05-22 22:56:48浏览次数:50  
标签:缓存 数据 性能 程序 索引 Tree 预取 优化 压缩

这6种性能优化,让你的程序飞起来!

软件设计开发某种意义上是"取"与"舍"的艺术。关于性能方面,就像建筑设计成抗震9度需要额外的成本一样,高性能软件系统也意味着更高的实现成本,有时候与其他质量属性甚至会冲突,比如安全性、可扩展性、可观测性等等。大部分时候我们需要的是:在业务遇到瓶颈之前,利用常见的技术手段将系统优化到预期水平。那么, 性能优化有哪些技术方向和手段呢

性能优化通常是"时间"与"空间"的互换与取舍,本文主要介绍常用的6种手段。

  • 索引术
  • 压缩术
  • 缓存术
  • 预取术
  • 削峰填谷术
  • 批量处理术

1. 索引术

索引的原理是 拿额外的存储空间换取查询时间,增加了 写入数据的开销,但使 读取数据的时间复杂度一般从O(n)降低到O(logn)甚至O(1)。索引不仅在数据库中广泛使用,前后端的开发中也在不知不觉运用。

在数据集比较大时,不用索引就像从一本 没有目录而且内容乱序的新华字典查一个字,得一页一页全翻一遍才能找到;用索引之后,就像用拼音先在目录中先 找到要查到字在哪一页,直接翻过去就行了。书籍的目录是典型的树状结构,那么软件世界常见的索引有哪些数据结构,分别在什么场景使用呢?

  • 哈希表(Hash Table):哈希表的原理可以类比银行办业务取号,给每个人一个号(计算出的Hash值),叫某个号直接对应了某个人,索引效率是最高的O(1),消耗的存储空间也相对更大。K-V存储组件以及各种编程语言提供的Map/Dict等数据结构,多数底层实现是用的哈希表。
  • 二叉搜索树(Binary Search Tree):有序存储的二叉树结构,在编程语言中广泛使用的红黑树;属于二叉搜索树,确切的说是"不完全平衡的"二叉搜索树。从C++、Java的TreeSet、TreeMap,到Linux的CPU调度,都能看到红黑树的影子。Java的HashMap在发现某个Hash槽的链表长度大于8时也会将链表升级为红黑树,而相比于红黑树"更加平衡"的AVL树反而实际用的更少。
  • 平衡多路搜索树(B-Tree):这里的B指的是Balance而不是Binary,二叉树在大量数据场景会导致查找深度很深,解决办法就是变成多叉树,MongoDB的索引用的就是B-Tree。
  • 叶节点相连的平衡多路搜索树(B+ Tree):B+ Tree是B-Tree的变体,只有叶子节点存数据,叶子与相邻叶子相连,MySQL的索引用的就是B+树,Linux的一些文件系统也使用的B+树索引inode。其实B+树还有一种在枝桠上再加链表的变体:B*树,暂时没想到实际应用。
  • 日志结构合并树(LSM Tree):Log Structured Merge Tree,简单理解就是像日志一样顺序写下去,多层多块的结构,上层写满压缩合并到下层。LSM Tree其实本身是为了优化写性能牺牲读性能的数据结构,并不能算是索引,但在大数据存储和一些NoSQL数据库中用的很广泛,因此这里也列进去了。
  • 字典树(Trie Tree):又叫前缀树,从树根串到树叶就是数据本身,因此树根到枝桠就是前缀,枝桠下面的所有数据都是匹配该前缀的。这种结构能非常方便的做前缀查找或词频统计,典型的应用有:自动补全、URL路由。其变体基数树(Radix Tree)在Nginx的Geo模块处理子网掩码前缀用了;Redis的Stream、Cluster等功能的实现也用到了基数树(Redis中叫Rax)。
  • 跳表(Skip List):是一种多层结构的有序链表,插入一个值时有一定概率"晋升"到上层形成间接的索引。跳表更适合大量并发写的场景,不存在红黑树的再平衡问题,Redis强大的ZSet底层数据结构就是哈希加跳表。
  • 倒排索引(Inverted index):这样翻译不太直观,可以叫"关键词索引",比如书籍末页列出的术语表就是倒排索引,标识出了每个术语出现在哪些页,这样我们要查某个术语在哪用的,从术语表一查,翻到所在的页数即可。倒排索引在全文索引存储中经常用到,比如ElasticSearch非常核心的机制就是倒排索引;Prometheus的时序数据库按标签查询也是在用倒排索引。

数据库主键之争:自增长 vs UUID。主键是很多数据库非常重要的索引,尤其是MySQL这样的RDBMS会经常面临这个难题:是用自增长的ID还是随机的UUID做主键?

自增长ID的性能最高,但不好做分库分表后的全局唯一ID,自增长的规律可能泄露业务信息;而UUID不具有可读性且太占存储空间。争执的结果就是找一个兼具二者的优点的 折衷方案:用 雪花算法生成分布式环境全局唯一的ID作为业务表主键,性能尚可、不那么占存储、又能保证全局单调递增,但引入了额外的复杂性,再次体现了取舍之道。

再回到 数据库中的索引,建索引要注意哪些点呢?

  • 定义好主键并尽量使用主键,多数数据库中,主键是效率最高的 聚簇索引
  • 在 Where或 Group By、Order By、Join On条件中用到的字段也要 按需建索引或联合索引,MySQL中搭配explain命令可以查询DML是否利用了索引;
  • 类似枚举值这样重复度太高的字段 不适合建索引(如果有位图索引可以建),频繁更新的列不太适合建索引;
  • 单列索引可以根据 实际查询的字段升级为 联合索引,通过部分冗余达到 索引覆盖,以 避免回表的开销;
  • 尽量减少索引冗余,比如建A、B、C三个字段的联合索引,Where条件查询A、A and B、A and B and C 都可以利用该联合索引,就无需再给A单独建索引了;
  • 根据数据库特有的索引特性选择适合的方案,比如像MongoDB,还可以建自动删除数据的 TTL索引、不索引空值的 稀疏索引、地理位置信息的 Geo索引等等。

数据库之外,在代码中也能应用索引的思维,比如对于集合中大量数据的查找,使用 Set、Map、Tree这样的数据结构,其实也是在用哈希索引或树状索引,比 直接遍历列表或数组查找的性能高很多。

2. 缓存术

缓存优化性能的原理和索引一样,是拿额外的 存储空间换取查询时间。缓存无处不在,设想一下我们在浏览器打开这篇文章,会有多少层缓存呢?

  • 首先解析DNS时,浏览器一层DNS缓存、操作系统一层DNS缓存、DNS服务器链上层层缓存;
  • 发送一个GET请求这篇文章,服务端很可能早已将其缓存在KV存储组件中了;
  • 即使没有击中缓存,数据库服务器内存中也缓存了最近查询的数据;
  • 即使没有击中数据库服务器的缓存,数据库从索引文件中读取,操作系统已经把热点文件的内容放置在Page Cache中了;
  • 即使没有击中操作系统的文件缓存,直接读取文件,大部分固态硬盘或者磁盘本身也自带缓存;
  • 数据取到之后服务器用模板引擎渲染出HTML,模板引擎早已解析好缓存在服务端内存中了;
  • 历经数十毫秒之后,终于服务器返回了一个渲染后的HTML,浏览器端解析DOM树,发送请求来加载静态资源;
  • 需要加载的静态资源可能因Cache-Control在浏览器本地磁盘和内存中已经缓存了;
  • 即使本地缓存到期,也可能因Etag没变服务器告诉浏览器304 Not Modified继续缓存;
  • 即使Etag变了,静态资源服务器也因其他用户访问过早已将文件缓存在内存中了;
  • 加载的JS文件会丢到JS引擎执行,其中可能涉及的种种缓存就不再展开了;
  • 整个过程中链条上涉及的 所有的计算机和网络设备,执行的热点代码和数据很可能会载入CPU的多级高速缓存。

这里列举的 仅仅是一部分常见的缓存,就有多种多样的形式:从廉价的磁盘到昂贵的CPU高速缓存,最终目的都是用来换取宝贵的时间。

缓存是"银弹"吗?

不,Phil Karlton 曾说过:

计算机科学中只有两件困难的事情:缓存失效和命名规范。
There are only two hard things in Computer Science: cache invalidation and naming things.

缓存的使用除了带来额外的复杂度以外,还面临如何处理 缓存失效的问题。

  • 多线程并发编程需要用各种手段(比如Java中的synchronized volatile)防止并发更新数据,一部分原因就是防止线程 本地缓存的不一致
  • 缓存失效衍生的问题还有: 缓存穿透、缓存击穿、缓存雪崩。解决用不存在的Key来穿透攻击,需要用空值缓存或布隆过滤器;解决单个缓存过期后,瞬间被大量恶意查询击穿的问题需要做查询互斥;解决某个时间点大量缓存同时过期的雪崩问题需要添加随机TTL;
  • 热点数据如果是 多级缓存,在发生修改时需要清除或修改 各级缓存,这些操作往往不是原子操作,又会涉及各种不一致问题。

除了通常意义上的缓存外, 对象重用的池化技术,也可以看作是一种 缓存的变体。常见的诸如JVM,V8这类运行时的 常量池、数据库连接池、HTTP连接池、线程池、Golang的sync.Pool对象池等等。在需要某个资源时从现有的池子里直接拿一个,稍作修改或直接用于另外的用途,池化重用也是性能优化常见手段。

3. 压缩术

说完了两个"空间换时间"的,我们再看一个" 时间换空间"的办法—— 压缩。压缩的原理 消耗计算的时间,换一种更紧凑的编码方式来表示数据

为什么要拿时间换空间?时间不是最宝贵的资源吗?

举一个视频网站的例子,如果不对视频做任何压缩编码,因为带宽有限,巨大的数据量在网络传输的耗时会比编码压缩的耗时多得多。 对数据的压缩虽然消耗了时间来换取更小的空间存储,但更小的存储空间会在另一个维度带来更大的时间收益

这个例子本质上是:" 操作系统内核与网络设备处理负担 vs 压缩解压的CPU/GPU负担"的权衡和取舍。

我们在代码中通常用的是 无损压缩,比如下面这些场景:

  • HTTP协议中Accept-Encoding添加Gzip/deflate,服务端对接受压缩的文本(JS/CSS/HTML)请求做压缩,大部分图片格式本身已经是压缩的无需压缩;
  • HTTP2协议的头部HPACK压缩;
  • JS/CSS文件的混淆和压缩(Uglify/Minify);
  • 一些RPC协议和消息队列传输的消息中,采用二进制编码和压缩(Gzip、Snappy、LZ4等等);
  • 缓存服务存过大的数据,通常也会事先压缩一下再存,取的时候解压;
  • 一些大文件的存储,或者不常用的历史数据存储,采用更高压缩比的算法存储;
  • JVM的对象指针压缩,JVM在32G以下的堆内存情况下默认开启"UseCompressedOops",用4个byte就可以表示一个对象的指针,这也是JVM尽量不要把堆内存设置到32G以上的原因;
  • MongoDB的二进制存储的BSON相对于纯文本的JSON也是一种压缩,或者说更紧凑的编码。但更紧凑的编码也意味着更差的可读性,这一点也是需要取舍的。纯文本的JSON比二进制编码要更占存储空间但却是REST API的主流,因为数据交换的场景下的可读性是非常重要的。

信息论告诉我们,无损压缩的极限是信息熵。进一步减小体积只能以损失部分信息为代价,也就是 有损压缩

那么,有损压缩有哪些应用呢?

  • 预览和缩略图,低速网络下视频降帧、降清晰度,都是对信息的有损压缩;
  • 音视频等多媒体数据的 采样和编码大多是有损的,比如MP3是利用傅里叶变换,有损地存储音频文件;jpeg等图片编码也是有损的。虽然有像WAV/PCM这类无损的音频编码方式,但多媒体数据的 采样本身就是有损的,相当于只截取了真实世界的极小一部分数据;
  • 散列化,比如K-V存储时Key过长,先对Key执行一次"傻"系列(SHA-1、SHA-256)哈希算法变成固定长度的短Key。另外,散列化在文件和数据验证(MD5、CRC、HMAC)场景用的也非常多,无需耗费大量算力对比完整的数据。

除了有损/无损压缩,但还有一个办法,就是 压缩的极端——从根本上 减少数据或彻底删除

能减少的就减少

  • JS打包过程"摇树",去掉没有使用的文件、函数、变量;
  • 开启HTTP/2和高版本的TLS,减少了Round Trip,节省了TCP连接,自带大量性能优化;
  • 减少不必要的信息,比如Cookie的数量,去掉不必要的HTTP请求头;
  • 更新采用增量更新,比如HTTP的PATCH,只传输变化的属性而不是整条数据;
  • 缩短单行日志的长度、缩短URL、在具有可读性情况下用短的属性名等等;
  • 使用位图和位操作,用风骚的 位操作最小化存取的数据。典型的例子有:用Redis的位图来记录统计海量用户登录状态;布隆过滤器用位图排除不可能存在的数据;大量开关型的设置的存储等等。

能删除的就删除

  • 删掉不用的数据;
  • 删掉不用的索引;
  • 删掉不该打的日志;
  • 删掉不必要的通信代码,不去发不必要的HTTP、RPC请求或调用,轮询改发布订阅;
  • 终极方案:砍掉整个功能

No code is the best way to write secure and reliable applications. Write nothing; deploy nowhere. —— Kelsey Hightower

4. 预取术

预取通常搭配缓存一起用,其原理是 在缓存空间换时间基础上更进一步,再加上一次" 时间换时间",也就是: 用事先预取的耗时,换取第一次加载的时间。当可以猜测出以后的某个时间很有可能会用到某种数据时,把数据预先取到需要用的地方,能大幅度提升用户体验或服务端响应速度。

是否用预取模式就像自助餐餐厅与厨师现做的区别,在自助餐餐厅可以直接拿做好的菜品,一般餐厅需要坐下来等菜品现做。那么,预取在哪些实际场景会用呢?

  • 视频或直播类网站,在播放前先缓冲一小段时间,就是预取数据。有的在播放时不仅预取这一条数据,甚至还会预测下一个要看的其他内容,提前把数据取到本地;
  • HTTP/2 Server Push,在浏览器请求某个资源时,服务器顺带把其他相关的资源一起推回去,HTML/JS/CSS几乎同时到达浏览器端,相当于浏览器被动预取了资源;
  • 一些客户端软件会用常驻进程的形式,提前预取数据或执行一些代码,这样可以极大提高第一次使用的打开速度;
  • 服务端同样也会用一些预热机制,一方面 热点数据预取到内存提前形成多级缓存;另一方面也是 对运行环境的预热,载入CPU高速缓存、热点函数JIT编译成机器码等等;
  • 热点资源提前预分配到各个实例,比如:秒杀、售票的 库存性质的数据;分布式 唯一ID等等。

天上不会掉馅饼, 预取也是有副作用的。正如烤箱预热需要消耗时间和额外的电费,在软件代码中做预取/预热的副作用通常是启动慢一些、占用一些闲时的计算资源、可能取到的 不一定是后面需要的

5. 削峰填谷术

削峰填谷的原理也是" 时间换时间", 谷时换峰时。削峰填谷与 预取是反过来的:预取是事先花时间做,削峰填谷是事后花时间做。就像三峡大坝可以抗住短期巨量洪水,事后雨停再慢慢开闸防水。软件世界的"削峰填谷"是类似的,只是不是用三峡大坝实现,而是用消息队列、异步化等方式。

常见的有这几类问题,我们分别来看每种对应的解决方案:

  • 针对前端、客户端的 启动优化或首屏优化:代码和数据等资源的 延时加载、分批加载、后台异步加载、或按需懒加载等等。
  • 背压控制 - 限流、节流、去抖等等。一夫当关,万夫莫开,从 入口处削峰,防止一些恶意重复请求以及请求过于频繁的爬虫,甚至是一些DDoS攻击。简单做法有网关层根据单个IP或用户用漏桶控制请求速率和上限;前端做按钮的节流去抖防止重复点击;网络层开启TCP SYN Cookie防止恶意的SYN洪水攻击等等。彻底杜绝爬虫、黑客手段的恶意洪水攻击是很难的,DDoS这类属于网络安全范畴了。
  • 针对正常的业务请求洪峰, 用消息队列暂存再异步化处理:常见的后端消息队列 Kafka、RocketMQ甚至Redis等等都可以做缓冲层,第一层业务处理直接校验后丢到消息队列中,在洪峰过去后慢慢消费消息队列中的消息,执行具体的业务。另外执行过程中的耗时和耗计算资源的操作,也可以丢到消息队列或数据库中,等到谷时处理。
  • 捋平毛刺:有时候洪峰不一定来自外界,如果系统内部大量 定时任务在同一时间执行,或与业务高峰期重合,很容易在监控中看到"毛刺"——短时间负载极高。一般解决方案就是错峰执行定时任务,或者分配到其他非核心业务系统中,把"毛刺"摊平。比如很多数据分析型任务都放在业务低谷期去执行,大量定时任务在创建时尽量加一些随机性来分散执行时间。
  • 避免错误风暴带来的次生洪峰:有时候网络抖动或短暂宕机,业务会出现各种异常或错误。这时处理不好很容易带来 次生灾害,比如:很多代码都会做错误重试,不加控制的大量重试甚至会导致网络抖动恢复后的瞬间,积压的大量请求再次冲垮整个系统;还有一些代码没有做超时、降级等处理,可能导致大量的等待耗尽TCP连接,进而导致整个系统被冲垮。解决之道就是做限定次数、间隔指数级增长的Back-Off重试,设定超时、降级策略。

6. 批量处理术

批量处理同样可以看成" 时间换时间",其原理是 减少了重复的事情,是一种对执行流程的压缩。以 个别批量操作更长的耗时为代价,在整体上换取了更多的时间

批量处理的应用也非常广泛,我们还是从前端开始讲:

  • 打包合并的JS文件、雪碧图等等,将 一批资源集中到一起, 一次性传输
  • 前端动画使用requestAnimationFrame在UI渲染时 批量处理积压的变化,而不是有变化立刻更新,在游戏开发中也有类似的应用;
  • 前后端中使用 队列暂存临时产生的数据,积压到一定数量再批量处理;
  • 在不影响可扩展性情况下, 一个接口传输多种需要的数据,减少大量ajax调用( GraphQL在这一点就做到了极致);
  • 系统间通信尽量发送整批数据,比如 消息队列的发布订阅、存取缓存服务的数据、RPC调用、插入或更新数据库等等,能批量做尽可能批量做,因为这些系统间通信的I/O时间开销已经很昂贵了;
  • 数据积压到一定程度再落盘,操作系统本身的写文件就是这么做的,Linux的fwrite只是写入缓冲区暂存,积压到一定程度再fsync刷盘。在应用层,很多高性能的数据库和K-V存储的实现都体现了这一点:一些NoSQL的LSM Tree的第一层就是在内存中先积压到一定大小再往下层合并;Redis的RDB结合AOF的落盘机制;Linux系统调用也提供了批量读写多个缓冲区文件的系统调用:readv/writev;
  • 延迟地批量回收资源,比如JVM的Survivor Space的S0和S1区互换、Redis的Key过期的清除策略。

批量处理如此好用,那么问题来了, 每一批放多大最合适呢

这个问题其实没有定论,有一些个人经验可以分享。

  • 前端把所有文件打包成单个JS,大部分时候并不是最优解。Webpack提供了很多分块的机制,CSS和JS分开、JS按业务分更小的Chunk结合懒加载、一些体积大又不用在首屏用的第三方库设置external或单独分块,可能整体性能更高。不一定要一批搞定所有事情,分几个小批次反而用户体验的性能更好。
  • Redis的 MGET、MSET来批量存取数据时,每批大小 不宜过大,因为Redis主线程只有一个,如果一批太大执行期间会让其他命令无法响应。经验上一批50-100个Key性能是不错的,但最好在真实环境下用真实大小的数据量化度量一下,做Benchmark测试才能确定一批大小的最优值。
  • MySQL、Oracle这类RDBMS,最优的批量Insert的大小也视数据行的特性而定。我之前在2U8G的Oracle上用一些普遍的业务数据做过测试,批量插入时每批5000-10000条数据性能是最高的,每批过大会导致DML的解析耗时过长,甚至单个SQL语句体积超限,单批太多反而得不偿失。
  • 消息队列的发布订阅,每批的消息长度尽量控制在1MB以内,有些云服务商提供的消息队列限制了最大长度,那这个长度可能就是 性能拐点,比如AWS的SQS服务对单条消息的限制是256KB。

总之,多大一批可以确保单批响应时间不太长的同时让整体性能最高,是需要在实际情况下做基准测试的,不能一概而论。而批量处理的 副作用在于:处理逻辑会更加复杂,尤其是一些涉及事务、并发的问题;需要用数组或队列用来存放缓冲一批数据,消耗了额外的存储空间。

参考:

     

标签:缓存,数据,性能,程序,索引,Tree,预取,优化,压缩
From: https://www.cnblogs.com/Leo_wl/p/17422000.html

相关文章

  • 微信小程序集成微信支付开发,后端是springboot项目
    一、准备工作首先是进入到小程序后台关联微信支付商户、以及接入微信支付申请 二、小程序端代码主要是用到了wx.requestPaymentAPI2.1在wxml文件中添加支付按钮<buttonbindtap="requestPayment">支付</button>2.2在wxss文件中定义支付按钮样式button{backgro......
  • Qt程序打包和发布
    准备工具1、QtCreator,记录QtCreator的安装路径2、NSIS空白脚本程序和NSIS汉化脚本程1Windows下打包与发布1.1打包成zip发布1、通过QtCreatorbuild应用程序,选择Relaeasebuild的应用程序占用空间少(推荐),选择Debugbuild的应用程序占用空间大。2、进入到build产物路径下,......
  • 微信小程序web-view与H5 通信方式探索
    小程序简介小程序是一种全新的连接用户与服务的方式,它可以在微信内被便捷地获取和传播,同时具有出色的使用体验。需求微信小程序H5混合开发就是 在一个小程序中,采用部分小程序原生页面,部分通过Webview内嵌H5页面¹,二者配合实现完整业务逻辑的方案。image.png 为什么需......
  • 编程打卡:面向对象程序设计
    importosimportsqlite3#Createadatabaseconnectionconn=sqlite3.connect('todo.db')#Createatodotablecur=conn.cursor()cur.execute('''CREATETABLEtodo(idINTEGERPRIMARYKEYAUTOINCREMENT,titleTEXTNOTNUL......
  • 扩展可能性:发挥React Native与小程序集成的优势
    ReactNative是一个强大的前端跨端框架,可以帮助开发者高效地构建移动应用程序,并充分利用跨平台开发的优势,同时提供接近原生应用程序的性能和用户体验。它具有许多技术上的优势:跨平台开发:使用ReactNative,您可以使用相同的代码库构建同时运行在iOS和Android平台上的应用程序。......
  • 2023新版小程序头像昵称显示 代码示例如下 可复制使用
    新版用户授权名字和头像官网点击触发用户头像部分:<blockwx:if="{{!avatarUrl}}">检查用户头像是否存在。如果头像不存在,显示默认头像。<blockwx:else="{{avatarUrl}}">如果头像存在,显示用户头像。<buttonopen-type="chooseAvatar"bind:chooseavatar="onChooseAvatar"cl......
  • MT6833(天玑 700)处理器参数_芯片规格_性能_功能
    MT6833,又称为天玑700,是一款高性能芯片。它采用了八核CPU,其中包括两颗主频高达2.2GHz的ArmCortex-A76核心,可以让用户享受到更流畅的使用体验。此外,它还配备了高性能LPDDR4X内存和UFS2.2存储,可以带给用户更快的数据传输速度,使用户在玩游戏、看视频、拍照片、即时聊天或者在线......
  • 《程序员修炼之道》笔记3
     最后,具体到实际问题,当我们在编程时,项目开始之前,应该注意一些什么呢?                本书作者郑重提倡开始编程之前,请深思熟虑,不要靠巧合编程,所谓巧合编程,就是不加思索,接到任务开始coding,run一下,正常运行了,甚至于自己都不清楚它为什么能运行,作者批注这是由于......
  • 性能测试课程大纲
    你是否想过,身为性能测试工程师,该如何在短短的80课时内真正掌握核心技术?今天,我要分享的就是这样一个企业级项目性能测试实战课程,让你全方位掌握性能测试!......
  • 《程序员修炼之道》笔记1
       首先不得不说这是一本熔知识,哲理,幽默与实践与一炉的奇书,引导你领悟程序设计的真谛,只可惜我没能好好的理解透彻,更加难得可贵的是它是一本英文原著,却有着丰富的难词和背景信息注释。本书出版之后,两位作者都参与起草了敏捷运动的纲领性文件《敏捷宣言》,所以敏捷软件开发可以......