基于蜣螂算法改进的LSTM预测算法
文章目录
- 基于蜣螂算法改进的LSTM预测算法
- 1.数据
- 2.LSTM模型
- 3.基于蜣螂算法优化的LSTM
- 4.测试结果
- 5.Matlab代码
摘要:为了提高LSTM数据的预测准确率,对LSTM中的参数利用蜣螂搜索算法进行优化。
1.数据
采用正弦信号仿真数据,数量为200。90%的数据用于训练,10%的数据用于测试。
2.LSTM模型
LSTM请自行参考相关机器学习书籍。
3.基于蜣螂算法优化的LSTM
蜣螂算法的优化参数为 LSTM网路包含的隐藏单元数目,最大训练周期,初始学习率,L2参数。适应度函数为LSTM对训练集和测试集的均方误差(MSE),均方误差MSE越低越好
4.测试结果
蜣螂参数设置如下:
%% 定义蜣螂优化参数
pop=10; %种群数量
Max_iteration=10; % 设定最大迭代次数
dim = 4;%维度,即LSTM网路包含的隐藏单元数目,最大训练周期,初始学习率,L2参数
lb = [2,2,10E-5,10E-6];%下边界
ub = [200,100,1,1];%上边界
fobj = @(x) fun(x,numFeatures,numResponses,XTrain,YTrain,XTest,YTest);
DBO-LSTM优化得到的最优参数为:
DBO-LSTM优化得到的隐藏单元数目为:166
DBO-LSTM优化得到的最大训练周期为:95
DBO-LSTM优化得到的InitialLearnRate为:0.21589
DBO-LSTM优化得到的L2Regularization为:0.21697
DBO-LSTM结果:
DBO-LSTM训练集MSE:0.021244
DBO-LSTM测试集MSE:0.061414
LSTM结果:
LSTM训练集MSE:0.00053664
LSTM测试集MSE:0.21191
从结果来看,经过改进后的优于未改进前的结果。
5.Matlab代码