首页 > 编程语言 >Python Numpy Tutorial

Python Numpy Tutorial

时间:2023-04-16 23:31:46浏览次数:56  
标签:Prints Python numpy prints np print array Numpy Tutorial

python

Python是一种高层次的,动态类型多范型编程语言。Python代码是经常被认为是几乎像伪代码,因为它可以让你同时是非常可读表达的代码非常少的线很强大的想法。作为一个例子,这里是在Python经典的快速排序算法的实现:

def quicksort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quicksort(left) + middle + quicksort(right)

print(quicksort([3,6,8,10,1,2,1]))
# Prints "[1, 1, 2, 3, 6, 8, 10]"

Python版本

目前的Python,2.7和3.5的两个不同的受支持版本。不过有点混乱的,Python的3.0中引入的语言很多向后兼容的改变,所以对于2.7编写的代码可能无法3.5,反之亦然工作。对于这个类的所有代码将使用Python 3.5。

您可以通过运行在命令行中检查你的Python版本python --version。

基本数据类型

最喜欢的语言,Python有一些基本类型包括整数,浮点数,布尔和字符串。这些数据类型的行为在与其他编程语言熟悉的方式。

编号:整数和浮点数的工作,你会从其他语言的期望:

x = 3
print(type(x)) # Prints "<class 'int'>"
print(x)       # Prints "3"
print(x + 1)   # Addition; prints "4"
print(x - 1)   # Subtraction; prints "2"
print(x * 2)   # Multiplication; prints "6"
print(x ** 2)  # Exponentiation; prints "9"
x += 1
print(x)  # Prints "4"
x *= 2
print(x)  # Prints "8"
y = 2.5
print(type(y)) # Prints "<class 'float'>"
print(y, y + 1, y * 2, y ** 2) # Prints "2.5 3.5 5.0 6.25"

请注意,与多国语言,Python没有一元递增(x++)或递减(x--)运算符。

布尔: Python中实现所有通常的运营商的布尔逻辑的,但使用英语词语而非符号(&&||等):

t = True
f = False
print(type(t)) # Prints "<class 'bool'>"
print(t and f) # Logical AND; prints "False"
print(t or f)  # Logical OR; prints "True"
print(not t)   # Logical NOT; prints "False"
print(t != f)  # Logical XOR; prints "True"

字符串: Python有字符串的大力支持

hello = 'hello'    # String literals can use single quotes
world = "world"    # or double quotes; it does not matter.
print(hello)       # Prints "hello"
print(len(hello))  # String length; prints "5"
hw = hello + ' ' + world  # String concatenation
print(hw)  # prints "hello world"
hw12 = '%s %s %d' % (hello, world, 12)  # sprintf style string formatting
print(hw12)  # prints "hello world 12"

字符串对象有一堆有用的方法; 例如:

s = "hello"
print(s.capitalize())  # Capitalize a string; prints "Hello"
print(s.upper())       # Convert a string to uppercase; prints "HELLO"
print(s.rjust(7))      # Right-justify a string, padding with spaces; prints "  hello"
print(s.center(7))     # Center a string, padding with spaces; prints " hello "
print(s.replace('l', '(ell)'))  # Replace all instances of one substring with another;
                                # prints "he(ell)(ell)o"
print('  world '.strip())  # Strip leading and trailing whitespace; prints "world"

集装箱

Python中包括几个内置容器类型:列表,字典,集和元组。

清单

列表是Python等效的阵列,但是调整大小并且可以包含不同类型的元素:

xs = [3, 1, 2]    # Create a list
print(xs, xs[2])  # Prints "[3, 1, 2] 2"
print(xs[-1])     # Negative indices count from the end of the list; prints "2"
xs[2] = 'foo'     # Lists can contain elements of different types
print(xs)         # Prints "[3, 1, 'foo']"
xs.append('bar')  # Add a new element to the end of the list
print(xs)         # Prints "[3, 1, 'foo', 'bar']"
x = xs.pop()      # Remove and return the last element of the list
print(x, xs)      # Prints "bar [3, 1, 'foo']"

切片: 除了访问在时间列表中的元素之一,Python提供简明的语法来访问子列表; 这个被称为切片:

nums = list(range(5))     # range is a built-in function that creates a list of integers
print(nums)               # Prints "[0, 1, 2, 3, 4]"
print(nums[2:4])          # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
print(nums[2:])           # Get a slice from index 2 to the end; prints "[2, 3, 4]"
print(nums[:2])           # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
print(nums[:])            # Get a slice of the whole list; prints "[0, 1, 2, 3, 4]"
print(nums[:-1])          # Slice indices can be negative; prints "[0, 1, 2, 3]"
nums[2:4] = [8, 9]        # Assign a new sublist to a slice
print(nums)               # Prints "[0, 1, 8, 9, 4]"

我们将看到在numpy的阵列的情况下再次切片。

循环:你也可以遍历像这样的列表中的元素:

animals = ['cat', 'dog', 'monkey']
for animal in animals:
    print(animal)
# Prints "cat", "dog", "monkey", each on its own line.

如果你想进入一个循环体中的每个元素的索引,使用内置的enumerate功能:

animals = ['cat', 'dog', 'monkey']
for idx, animal in enumerate(animals):
    print('#%d: %s' % (idx + 1, animal))
# Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line

列表解析: 在编程时,我们经常要变换一种类型的数据转换成另一种。举一个简单的例子,考虑下面的代码,计算平方数:

nums = [0, 1, 2, 3, 4]
squares = []
for x in nums:
    squares.append(x ** 2)
print(squares)   # Prints [0, 1, 4, 9, 16]
nums = [0, 1, 2, 3, 4]
squares = [x ** 2 for x in nums]
print(squares)   # Prints [0, 1, 4, 9, 16]

字典

字典存储(键,值)对,类似于Map在Java或Javascript中的对象。您可以使用它像这样:

d = {'cat': 'cute', 'dog': 'furry'}  # Create a new dictionary with some data
print(d['cat'])       # Get an entry from a dictionary; prints "cute"
print('cat' in d)     # Check if a dictionary has a given key; prints "True"
d['fish'] = 'wet'     # Set an entry in a dictionary
print(d['fish'])      # Prints "wet"
# print(d['monkey'])  # KeyError: 'monkey' not a key of d
print(d.get('monkey', 'N/A'))  # Get an element with a default; prints "N/A"
print(d.get('fish', 'N/A'))    # Get an element with a default; prints "wet"
del d['fish']         # Remove an element from a dictionary
print(d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A"

循环:这是很容易遍历字典的键:

d = {'person': 2, 'cat': 4, 'spider': 8}
for animal in d:
    legs = d[animal]
    print('A %s has %d legs' % (animal, legs))
# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"

如果你想访问键和相应的值,使用items方法:

d = {'person': 2, 'cat': 4, 'spider': 8}
for animal, legs in d.items():
    print('A %s has %d legs' % (animal, legs))
# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"

字典解析: 这是list解析相似,但可让您轻松地构建字典。例如:

nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print(even_num_to_square)  # Prints "{0: 0, 2: 4, 4: 16}"

集合

一组是不同的元素的无序集合。作为一个简单的例子,考虑以下因素:

animals = {'cat', 'dog'}
print('cat' in animals)   # Check if an element is in a set; prints "True"
print('fish' in animals)  # prints "False"
animals.add('fish')       # Add an element to a set
print('fish' in animals)  # Prints "True"
print(len(animals))       # Number of elements in a set; prints "3"
animals.add('cat')        # Adding an element that is already in the set does nothing
print(len(animals))       # Prints "3"
animals.remove('cat')     # Remove an element from a set
print(len(animals))       # Prints "2"

循环: 遍历一组具有相同的语法迭代一个列表; 然而,由于集合是无序的,你不能对在您访问的集合中的元素的顺序假设:

animals = {'cat', 'dog', 'fish'}
for idx, animal in enumerate(animals):
    print('#%d: %s' % (idx + 1, animal))
# Prints "#1: fish", "#2: dog", "#3: cat"

套装: 像列表和字典,我们可以很容易地使用一套建设集:

from math import sqrt
nums = {int(sqrt(x)) for x in range(30)}
print(nums)  # Prints "{0, 1, 2, 3, 4, 5}"

元组

元组是值的(immutable)的有序列表。元组是在类似于列表多种方式; 的最重要的区别之一是,元组可被用作在字典键和作为组的元素,而列表不能。下面是一个简单的例子:

d = {(x, x + 1): x for x in range(10)}  # Create a dictionary with tuple keys
t = (5, 6)        # Create a tuple
print(type(t))    # Prints "<class 'tuple'>"
print(d[t])       # Prints "5"
print(d[(1, 2)])  # Prints "1"

函数

Python函数所使用的定义的def关键字。例如:

def sign(x):
    if x > 0:
        return 'positive'
    elif x < 0:
        return 'negative'
    else:
        return 'zero'

for x in [-1, 0, 1]:
    print(sign(x))
# Prints "negative", "zero", "positive"

我们经常会定义功能,从而利用可选关键字参数,就像这样:

def hello(name, loud=False):
    if loud:
        print('HELLO, %s!' % name.upper())
    else:
        print('Hello, %s' % name)

hello('Bob') # Prints "Hello, Bob"
hello('Fred', loud=True)  # Prints "HELLO, FRED!"

在Python中定义类的语法很简单:

class Greeter(object):

    # Constructor
    def __init__(self, name):
        self.name = name  # Create an instance variable

    # Instance method
    def greet(self, loud=False):
        if loud:
            print('HELLO, %s!' % self.name.upper())
        else:
            print('Hello, %s' % self.name)

g = Greeter('Fred')  # Construct an instance of the Greeter class
g.greet()            # Call an instance method; prints "Hello, Fred"
g.greet(loud=True)   # Call an instance method; prints "HELLO, FRED!"

NumPy

NumPy的是在Python科学计算的核心库。它提供了一个高性能的多维数组对象,和用于与这些阵列的工具。

numpy的阵列是值的网格,所有相同类型的,并且是由非负整数的元组索引。维数是秩阵列的; 的形状 的阵列的是整数赋予沿着每个维度阵列的大小的一个元组。

我们可以从使用方括号嵌套的Python列表,并获得元素初始化numpy的数组:

import numpy as np

a = np.array([1, 2, 3])   # Create a rank 1 array
print(type(a))            # Prints "<class 'numpy.ndarray'>"
print(a.shape)            # Prints "(3,)"
print(a[0], a[1], a[2])   # Prints "1 2 3"
a[0] = 5                  # Change an element of the array
print(a)                  # Prints "[5, 2, 3]"

b = np.array([[1,2,3],[4,5,6]])    # Create a rank 2 array
print(b.shape)                     # Prints "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0])   # Prints "1 2 4"

NumPy的还提供了许多功能来创建数组:

import numpy as np

a = np.zeros((2,2))   # Create an array of all zeros
print(a)              # Prints "[[ 0.  0.]
                      #          [ 0.  0.]]"

b = np.ones((1,2))    # Create an array of all ones
print(b)              # Prints "[[ 1.  1.]]"

c = np.full((2,2), 7)  # Create a constant array
print(c)               # Prints "[[ 7.  7.]
                       #          [ 7.  7.]]"

d = np.eye(2)         # Create a 2x2 identity matrix
print(d)              # Prints "[[ 1.  0.]
                      #          [ 0.  1.]]"

e = np.random.random((2,2))  # Create an array filled with random values
print(e)                     # Might print "[[ 0.91940167  0.08143941]
                             #               [ 0.68744134  0.87236687]]"
                             

数组索引

NumPy的提供了几种方法来索引数组。

切片: 到Python列表相似,numpy的阵列可切片。由于阵列可以是多维的,必须指定用于所述阵列的每一维的片:

import numpy as np

# Create the following rank 2 array with shape (3, 4)
# [[ 1  2  3  4]
#  [ 5  6  7  8]
#  [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

# Use slicing to pull out the subarray consisting of the first 2 rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
#  [6 7]]
b = a[:2, 1:3]

# A slice of an array is a view into the same data, so modifying it
# will modify the original array.
print(a[0, 1])   # Prints "2"
b[0, 0] = 77     # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1])   # Prints "77"

你也可以用切片的索引混合整数索引。然而,这样做会产生比原来的阵列更低级别的阵列。请注意,这是从MATLAB处理阵列切片的方式完全不同:

import numpy as np

# Create the following rank 2 array with shape (3, 4)
# [[ 1  2  3  4]
#  [ 5  6  7  8]
#  [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

# Two ways of accessing the data in the middle row of the array.
# Mixing integer indexing with slices yields an array of lower rank,
# while using only slices yields an array of the same rank as the
# original array:
row_r1 = a[1, :]    # Rank 1 view of the second row of a
row_r2 = a[1:2, :]  # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)  # Prints "[5 6 7 8] (4,)"
print(row_r2, row_r2.shape)  # Prints "[[5 6 7 8]] (1, 4)"

# We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape)  # Prints "[ 2  6 10] (3,)"
print(col_r2, col_r2.shape)  # Prints "[[ 2]
                             #          [ 6]
                             #          [10]] (3, 1)"

整数数组索引: 当索引使用切片numpy的阵列,所得到的阵列视图永远是原始阵列的子阵列。与此相反,整数数组索引可以构建使用来自另一阵列中的数据的任意数组。下面是一个例子:

import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]])  # Prints "[1 4 5]"

# The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))  # Prints "[1 4 5]"

# When using integer array indexing, you can reuse the same
# element from the source array:
print(a[[0, 0], [1, 1]])  # Prints "[2 2]"

# Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]]))  # Prints "[2 2]"

与整数数组索引一个有用的技巧是选择或从一个矩阵的每一行突变一个元件:

import numpy as np

# Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

print(a)  # prints "array([[ 1,  2,  3],
          #                [ 4,  5,  6],
          #                [ 7,  8,  9],
          #                [10, 11, 12]])"

# Create an array of indices
b = np.array([0, 2, 0, 1])

# Select one element from each row of a using the indices in b
print(a[np.arange(4), b])  # Prints "[ 1  6  7 11]"

# Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10

print(a)  # prints "array([[11,  2,  3],
          #                [ 4,  5, 16],
          #                [17,  8,  9],
          #                [10, 21, 12]])

布尔数组索引: 布尔数组的索引可以让你挑选出一个数组的任意元素。通常,这类型的索引被用来选择满足某个条件的一个阵列中的元素。下面是一个例子:

import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2)   # Find the elements of a that are bigger than 2;
                     # this returns a numpy array of Booleans of the same
                     # shape as a, where each slot of bool_idx tells
                     # whether that element of a is > 2.

print(bool_idx)      # Prints "[[False False]
                     #          [ True  True]
                     #          [ True  True]]"

# We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx])  # Prints "[3 4 5 6]"

# We can do all of the above in a single concise statement:
print(a[a > 2])     # Prints "[3 4 5 6]"

数据类型

每numpy的阵列是相同类型的元素的网格。NumPy的提供了一个大组,您可以使用来构建阵列数字数据类型。NumPy的尝试,当你创建一个数组来猜测数据类型,但构建阵列功能,通常还包括一个可选的参数来显式指定数据类型。下面是一个例子:

import numpy as np

x = np.array([1, 2])   # Let numpy choose the datatype
print(x.dtype)         # Prints "int64"

x = np.array([1.0, 2.0])   # Let numpy choose the datatype
print(x.dtype)             # Prints "float64"

x = np.array([1, 2], dtype=np.int64)   # Force a particular datatype
print(x.dtype)                         # Prints "int64"

阵列数学

基本的数学函数对数组的elementwise操作,并且可同时作为运算符重载,并作为numpy的模块中的功能:

import numpy as np

x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)

# Elementwise sum; both produce the array
# [[ 6.0  8.0]
#  [10.0 12.0]]
print(x + y)
print(np.add(x, y))

# Elementwise difference; both produce the array
# [[-4.0 -4.0]
#  [-4.0 -4.0]]
print(x - y)
print(np.subtract(x, y))

# Elementwise product; both produce the array
# [[ 5.0 12.0]
#  [21.0 32.0]]
print(x * y)
print(np.multiply(x, y))

# Elementwise division; both produce the array
# [[ 0.2         0.33333333]
#  [ 0.42857143  0.5       ]]
print(x / y)
print(np.divide(x, y))

# Elementwise square root; produces the array
# [[ 1.          1.41421356]
#  [ 1.73205081  2.        ]]
print(np.sqrt(x))

请注意,与MATLAB,*是的elementwise乘法,而不是矩阵乘法。我们改为使用dot函数来计算矢量的内积,通过矩阵相乘的矢量,并且相乘的矩阵。dot可既作为numpy的模块中的函数和作为阵列的对象的一个实例方法:

import numpy as np

x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])

v = np.array([9,10])
w = np.array([11, 12])

# Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))

# Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))

# Matrix / matrix product; both produce the rank 2 array
# [[19 22]
#  [43 50]]
print(x.dot(y))
print(np.dot(x, y))

numpy的提供了用于在阵列上执行计算许多有用的功能; 最有效的方法之一是sum

import numpy as np

x = np.array([[1,2],[3,4]])

print(np.sum(x))  # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0))  # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1))  # Compute sum of each row; prints "[3 7]"

除了使用数组运算数学函数,我们经常需要在阵列重塑或以其它方式处理数据。这种类型的操作的最简单的例子是转置的矩阵; 转置矩阵,只需使用T一个阵列对象的属性:

import numpy as np

x = np.array([[1,2], [3,4]])
print(x)    # Prints "[[1 2]
            #          [3 4]]"
print(x.T)  # Prints "[[1 3]
            #          [2 4]]"

# Note that taking the transpose of a rank 1 array does nothing:
v = np.array([1,2,3])
print(v)    # Prints "[1 2 3]"
print(v.T)  # Prints "[1 2 3]"

广播

广播是一种强大的机制执行算术运算时,允许与numpy的不同形状的阵列工作。我们经常有一个较小的阵列和更大的阵列,我们要使用较小的阵列多次以较大的阵列上执行某些操作。

例如,假设我们要常向量添加到矩阵的每一行。我们可以做这样的:

import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x)   # Create an empty matrix with the same shape as x

# Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):
    y[i, :] = x[i, :] + v

# Now y is the following
# [[ 2  2  4]
#  [ 5  5  7]
#  [ 8  8 10]
#  [11 11 13]]
print(y)

这工作; 然而,当基体x是非常大的,计算在Python外在的循环可能会很慢。请注意,添加载体v的矩阵的每一行 x等效于形成基质vv通过堆叠的多个副本v垂直,则执行的elementwise求和xvv。我们可以实现这种方法是这样的:

import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
vv = np.tile(v, (4, 1))   # Stack 4 copies of v on top of each other
print(vv)                 # Prints "[[1 0 1]
                          #          [1 0 1]
                          #          [1 0 1]
                          #          [1 0 1]]"
y = x + vv  # Add x and vv elementwise
print(y)  # Prints "[[ 2  2  4
          #          [ 5  5  7]
          #          [ 8  8 10]
          #          [11 11 13]]"

NumPy的广播可以让我们无需实际创建的多个副本执行此计算v。考虑一下这个版本,使用广播:

import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v  # Add v to each row of x using broadcasting
print(y)  # Prints "[[ 2  2  4]
          #          [ 5  5  7]
          #          [ 8  8 10]
          #          [11 11 13]]"

该生产线y = x + v的工作,即使x有形状(4, 3)和v具有形状 (3,)由于广播; 这一行,工作起来就像v实际上有形状(4, 3),其中每行的副本v,并执行按元素的总和。

广播两个数组一起遵循以下规则:

1 如果阵列不具有相同的等级,前面加上较低等级阵列的形状以1s直到两个形状具有相同的长度。
两个阵列被认为是兼容的尺寸,如果它们在尺寸相同的尺寸,或者,如果阵列中的一个具有在该维度大小1。
2 该阵列可以,如果他们在所有方面兼容播出在一起。
广播之后,将每个阵列的行为就好像它有形状等于所述的elementwise最大两个输入数组的形状。
在任何维度,其中一个阵列有尺寸1和其它阵列比1具有尺寸时,所述第一阵列的行为就好像它是沿该维复制
3 如果这种解释是没有意义的,尝试阅读的解释 从文档 或这样的解释。

这里有广播的一些应用:

import numpy as np

# Compute outer product of vectors
v = np.array([1,2,3])  # v has shape (3,)
w = np.array([4,5])    # w has shape (2,)
# To compute an outer product, we first reshape v to be a column
# vector of shape (3, 1); we can then broadcast it against w to yield
# an output of shape (3, 2), which is the outer product of v and w:
# [[ 4  5]
#  [ 8 10]
#  [12 15]]
print(np.reshape(v, (3, 1)) * w)

# Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:
# [[2 4 6]
#  [5 7 9]]
print(x + v)

# Add a vector to each column of a matrix
# x has shape (2, 3) and w has shape (2,).
# If we transpose x then it has shape (3, 2) and can be broadcast
# against w to yield a result of shape (3, 2); transposing this result
# yields the final result of shape (2, 3) which is the matrix x with
# the vector w added to each column. Gives the following matrix:
# [[ 5  6  7]
#  [ 9 10 11]]
print((x.T + w).T)
# Another solution is to reshape w to be a column vector of shape (2, 1);
# we can then broadcast it directly against x to produce the same
# output.
print(x + np.reshape(w, (2, 1)))

# Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
# [[ 2  4  6]
#  [ 8 10 12]]
print(x * 2)

广播通常使代码更简洁,更快,所以你应该努力在可能的地方使用它。

SciPy

numpy的提供了一个高性能的多维数组和基本工具来计算与和操纵这些阵列。 SciPy的 基础上这一点,提供了大量的,关于numpy的阵列操作并且对于不同类型的科学和工程应用有用的功能。

图像操作

SciPy的提供了一些基本的功能与图像的工作。例如,它具有以下功能:从磁盘中读取图像转换成numpy的阵列,以numpy的阵列写入磁盘如图像,和调整大小的图像。这里是一个展示这些功能的一个简单的例子:

from scipy.misc import imread, imsave, imresize

# Read an JPEG image into a numpy array
img = imread('assets/cat.jpg')
print(img.dtype, img.shape)  # Prints "uint8 (400, 248, 3)"

# We can tint the image by scaling each of the color channels
# by a different scalar constant. The image has shape (400, 248, 3);
# we multiply it by the array [1, 0.95, 0.9] of shape (3,);
# numpy broadcasting means that this leaves the red channel unchanged,
# and multiplies the green and blue channels by 0.95 and 0.9
# respectively.
img_tinted = img * [1, 0.95, 0.9]

# Resize the tinted image to be 300 by 300 pixels.
img_tinted = imresize(img_tinted, (300, 300))

# Write the tinted image back to disk
imsave('assets/cat_tinted.jpg', img_tinted)

image image

左:原始图像。右:有色和调整图像。

MATLAB文件

功能scipy.io.loadmat和scipy.io.savemat允许您读取和写入MATLAB文件。你可以阅读他们 的文档中。

点之间的距离

SciPy的定义用于计算点集之间的距离的一些有用的功能。

函数scipy.spatial.distance.pdist计算所有对在一个给定的点之间的距离:

import numpy as np
from scipy.spatial.distance import pdist, squareform

# Create the following array where each row is a point in 2D space:
# [[0 1]
#  [1 0]
#  [2 0]]
x = np.array([[0, 1], [1, 0], [2, 0]])
print(x)

# Compute the Euclidean distance between all rows of x.
# d[i, j] is the Euclidean distance between x[i, :] and x[j, :],
# and d is the following array:
# [[ 0.          1.41421356  2.23606798]
#  [ 1.41421356  0.          1.        ]
#  [ 2.23606798  1.          0.        ]]
d = squareform(pdist(x, 'euclidean'))
print(d)

Matplotlib

Matplotlib是一个绘图库。在本节中给出一个简要介绍matplotlib.pyplot模块,其提供类似于MATLAB的绘图系统。

绘制

在matplotlib最重要的功能是plot,它允许你绘制2D数据。下面是一个简单的例子:

import numpy as np
import matplotlib.pyplot as plt

# Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)

# Plot the points using matplotlib
plt.plot(x, y)
plt.show()  # You must call plt.show() to make graphics appear.

随着额外的工作只是一点点,我们可以一次轻松绘制多条线路,并添加标题,图例和轴标签: image

import numpy as np
import matplotlib.pyplot as plt

# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
plt.legend(['Sine', 'Cosine'])
plt.show()

image

次要情节

您可以使用该图绘制不同的东西subplot的功能。下面是一个例子:

import numpy as np
import matplotlib.pyplot as plt

# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

# Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2, 1, 1)

# Make the first plot
plt.plot(x, y_sin)
plt.title('Sine')

# Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine')

# Show the figure.
plt.show()

image

图片

您可以使用imshow函数来显示图像。下面是一个例子:

image

import numpy as np
from scipy.misc import imread, imresize
import matplotlib.pyplot as plt

img = imread('assets/cat.jpg')
img_tinted = img * [1, 0.95, 0.9]

# Show the original image
plt.subplot(1, 2, 1)
plt.imshow(img)

# Show the tinted image
plt.subplot(1, 2, 2)

# A slight gotcha with imshow is that it might give strange results
# if presented with data that is not uint8. To work around this, we
# explicitly cast the image to uint8 before displaying it.
plt.imshow(np.uint8(img_tinted))
plt.show()

标签:Prints,Python,numpy,prints,np,print,array,Numpy,Tutorial
From: https://blog.51cto.com/hiszm/6193867

相关文章

  • LeetCode-Top100: 有效的括号 (python)
     给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。有效字符串需满足:左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括号都有一个对应的相同类型的左括号。 示例1:输入:s="()"输出:true示例 2:输入:s="()[]{}"输......
  • NumPy 秘籍中文第二版:七、性能分析和调试
    在本章中,我们将介绍以下秘籍:使用timeit进行性能分析使用IPython进行分析安装line_profiler使用line_profiler分析代码具有cProfile扩展名的性能分析代码使用IPython进行调试使用PuDB进行调试简介调试是从软件中查找和删除错误的行为。分析是指构建程序的概要文件,以便收集有关......
  • NumPy 秘籍中文第二版:十一、最新最强的 NumPy
    在本章中,我们涵盖以下秘籍:用at()方法用花式索引代替ufuncs通过使用partition()函数选择快速中位数进行部分排序使用nanmean(),nanvar()和nanstd()函数跳过NaN使用full()和full_like()函数创建值初始化的数组numpy.random.choice()随机抽样使用datetime64类型和相关的API简介自《......
  • NumPy 秘籍中文第二版:八、质量保证
    在本章中,我们将介绍以下秘籍:安装Pyflakes使用Pyflakes执行静态分析用Pylint分析代码使用Pychecker执行静态分析使用docstrings测试代码编写单元测试使用模拟测试代码以BDD方式来测试简介与普遍的看法相反,质量保证与其说是发现错误,不如说是发现它们。我们将讨论两种提高代......
  • NumPy 秘籍中文第二版:一、使用 IPython
    在本章中,我们将介绍以下秘籍:安装IPython使用IPython作为Shell阅读手册页安装matplotlib运行IPython笔记本导出IPython笔记本导入网络笔记本配置笔记本服务器探索SymPy配置文件简介IPython,可从ipython.org获得,是一个免费的开源项目,可用于Linux,Unix,MacOSX,和Windows......
  • NumPy 初学者指南中文第三版:11~14
    十一、玩转Pygame本章适用于希望使用NumPy和Pygame快速轻松创建游戏的开发人员。基本的游戏开发经验会有所帮助,但这不是必需的。您将学到的东西如下:pygame基础matplotlib集成表面像素数组人工智能动画OpenGLPygamePygame是Python框架,最初由PeteShinners编写,顾名思义......
  • NumPy 秘籍中文第二版:五、音频和图像处理
    在本章中,我们将介绍NumPy和SciPy的基本图像和音频(WAV文件)处理。在以下秘籍中,我们将使用NumPy对声音和图像进行有趣的操作:将图像加载到内存映射中添加图像图像模糊重复音频片段产生声音设计音频过滤器使用Sobel过滤器进行边界检测简介尽管本书中的所有章节都很有趣,但在本......
  • NumPy 秘籍中文第二版:二、高级索引和数组概念
    在本章中,我们将介绍以下秘籍:安装SciPy安装PIL调整图像大小比较视图和副本翻转Lena花式索引位置列表索引布尔值索引数独的步幅技巧广播数组简介NumPy以其高效的数组而闻名。之所以成名,部分原因是索引容易。我们将演示使用图像的高级索引技巧。在深入研究索引之前,我们将安装必......
  • Python 智能项目:1~5
    原文:IntelligentProjectsUsingPython协议:CCBY-NC-SA4.0译者:飞龙本文来自【ApacheCN深度学习译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。不要担心自己的形象,只关心如何实现目标。——《原则》,生活原则2.3.c一、人工智能系统的基础人工智能(AI)在过去几年中一直......
  • Python 元学习实用指南:1~5
    原文:Hands-OnMetaLearningwithPython协议:CCBY-NC-SA4.0译者:飞龙本文来自【ApacheCN深度学习译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。不要担心自己的形象,只关心如何实现目标。——《原则》,生活原则2.3.c一、元学习导论元学习是当前人工智能领域最有前途和......