- 1 Stream概述
- 2 Stream的创建
- 3 Stream的使用
- 4 Stream源码解读
先贴上几个案例,水平高超的同学可以挑战一下:
- 从员工集合中筛选出salary大于8000的员工,并放置到新的集合里。
- 统计员工的最高薪资、平均薪资、薪资之和。
- 将员工按薪资从高到低排序,同样薪资者年龄小者在前。
- 将员工按性别分类,将员工按性别和地区分类,将员工按薪资是否高于8000分为两部分。
用传统的迭代处理也不是很难,但代码就显得冗余了,跟Stream相比高下立判。
1 Stream概述
Java 8 是一个非常成功的版本,这个版本新增的Stream
,配合同版本出现的 Lambda
,给我们操作集合(Collection)提供了极大的便利。
那么什么是Stream
?
Stream
将要处理的元素集合看作一种流,在流的过程中,借助Stream API
对流中的元素进行操作,比如:筛选、排序、聚合等。
Stream
可以由数组或集合创建,对流的操作分为两种:
- 中间操作,每次返回一个新的流,可以有多个。
- 终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值。
另外,Stream
有几个特性:
- stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。
- stream不会改变数据源,通常情况下会产生一个新的集合或一个值。
- stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。
2 Stream的创建
Stream
可以通过集合数组创建。
1、通过 java.util.Collection.stream()
方法用集合创建流
List<String> list = Arrays.asList("a", "b", "c");
// 创建一个顺序流
Stream<String> stream = list.stream();
// 创建一个并行流
Stream<String> parallelStream = list.parallelStream();
2、使用java.util.Arrays.stream(T[] array)
方法用数组创建流
int[] array={1,3,5,6,8};
IntStream stream = Arrays.stream(array);
3、使用Stream
的静态方法:of()、iterate()、generate()
Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);
Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
stream2.forEach(System.out::println);
Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);
输出结果:
0 3 6 9 0.6796156909271994 0.1914314208854283 0.8116932592396652
stream
和parallelStream
的简单区分: stream
是顺序流,由主线程按顺序对流执行操作,而parallelStream
是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:
如果流中的数据量足够大,并行流可以加快处速度。
除了直接创建并行流,还可以通过parallel()
把顺序流转换成并行流:
Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();
1
3 Stream的使用
在使用stream之前,先理解一个概念:Optional
。
Optional
类是一个可以为null
的容器对象。如果值存在则isPresent()
方法会返回true
,调用get()
方法会返回该对象。更详细说明请见:菜鸟教程Java 8 Optional类
接下来,大批代码向你袭来!我将用20个案例将Stream的使用整得明明白白,只要跟着敲一遍代码,就能很好地掌握。
案例使用的员工类
这是后面案例中使用的员工类:
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));
class Person {
private String name; // 姓名
private int salary; // 薪资
private int age; // 年龄
private String sex; //性别
private String area; // 地区
// 构造方法
public Person(String name, int salary, int age,String sex,String area) {
this.name = name;
this.salary = salary;
this.age = age;
this.sex = sex;
this.area = area;
}
// 省略了get和set,请自行添加
}
3.1 遍历/匹配(foreach/find/match)
Stream
也是支持类似集合的遍历和匹配元素的,只是Stream
中的元素是以Optional
类型存在的。Stream
的遍历、匹配非常简单。
// import已省略,请自行添加,后面代码亦是
public class StreamTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);
// 遍历输出符合条件的元素
list.stream().filter(x -> x > 6).forEach(System.out::println);
// 匹配第一个
Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();
// 匹配任意(适用于并行流)
Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();
// 是否包含符合特定条件的元素
boolean anyMatch = list.stream().anyMatch(x -> x < 6);
System.out.println("匹配第一个值:" + findFirst.get());
System.out.println("匹配任意一个值:" + findAny.get());
System.out.println("是否存在大于6的值:" + anyMatch);
}
}
3.2 筛选(filter)
筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。
案例一:筛选出Integer
集合中大于7的元素,并打印出来
public class StreamTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
Stream<Integer> stream = list.stream();
stream.filter(x -> x > 7).forEach(System.out::println);
}
}
预期结果:
8 9
案例二:筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect
(收集),后文有详细介绍。
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
personList.add(new Person("Owen", 9500, 25, "male", "New York"));
personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName).collect(Collectors.toList());
System.out.print("高于8000的员工姓名:" + fiterList);
}
}
运行结果:
高于8000的员工姓名:[Tom, Anni, Owen]
3.3 聚合(max/min/count)
max
、min
、count
这些字眼你一定不陌生,没错,在mysql中我们常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。
案例一:获取String
集合中最长的元素。
public class StreamTest {
public static void main(String[] args) {
List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");
Optional<String> max = list.stream().max(Comparator.comparing(String::length));
System.out.println("最长的字符串:" + max.get());
}
}
输出结果:
最长的字符串:weoujgsd
案例二:获取Integer
集合中的最大值。
public class StreamTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);
// 自然排序
Optional<Integer> max = list.stream().max(Integer::compareTo);
// 自定义排序
Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o1.compareTo(o2);
}
});
System.out.println("自然排序的最大值:" + max.get());
System.out.println("自定义排序的最大值:" + max2.get());
}
}
输出结果:
自然排序的最大值:11 自定义排序的最大值:11
案例三:获取员工工资最高的人。
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
personList.add(new Person("Owen", 9500, 25, "male", "New York"));
personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
Optional<Person>max=personList.stream().max(Comparator.comparingInt(Person::getSalary));
System.out.println("员工工资最大值:" + max.get().getSalary());
}
}
输出结果:
员工工资最大值:9500
案例四:计算Integer
集合中大于6的元素的个数。
import java.util.Arrays;
import java.util.List;
public class StreamTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);
long count = list.stream().filter(x -> x > 6).count();
System.out.println("list中大于6的元素个数:" + count);
}
}
输出结果:
list中大于6的元素个数:4
3.4 映射(map/flatMap)
映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map
和flatMap
:
map
:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。flatMap
:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。
public class StreamTest {
public static void main(String[] args) {
String[] strArr = { "abcd", "bcdd", "defde", "fTr" };
List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());
List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());
System.out.println("每个元素大写:" + strList);
System.out.println("每个元素+3:" + intListNew);
}
}
输出结果:
每个元素大写:[ABCD, BCDD, DEFDE, FTR] 每个元素+3:[4, 6, 8, 10, 12, 14]
案例二:将员工的薪资全部增加1000。
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
personList.add(new Person("Owen", 9500, 25, "male", "New York"));
personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
// 不改变原来员工集合的方式
List<Person> personListNew = personList.stream().map(person -> {
Person personNew = new Person(person.getName(), 0, 0, null, null);
personNew.setSalary(person.getSalary() + 10000);
return personNew;
}).collect(Collectors.toList());
System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());
// 改变原来员工集合的方式
List<Person> personListNew2 = personList.stream().map(person -> {
person.setSalary(person.getSalary() + 10000);
return person;
}).collect(Collectors.toList());
System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());
}
}
输出结果:
一次改动前:Tom–>8900 一次改动后:Tom–>18900
二次改动前:Tom–>18900 二次改动后:Tom–>18900
案例三:将两个字符数组合并成一个新的字符数组。
public class StreamTest {
public static void main(String[] args) {
List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
List<String> listNew = list.stream().flatMap(s -> {
// 将每个元素转换成一个stream
String[] split = s.split(",");
Stream<String> s2 = Arrays.stream(split);
return s2;
}).collect(Collectors.toList());
System.out.println("处理前的集合:" + list);
System.out.println("处理后的集合:" + listNew);
}
}
输出结果:
处理前的集合:[m-k-l-a, 1-3-5] 处理后的集合:[m, k, l, a, 1, 3, 5]
map.forEach((s, integer) -> map2.put(s, integer));
map.forEach(map2::put);
3.5 归约(reduce)
归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
案例一:求Integer
集合的元素之和、乘积和最大值。
public class StreamTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
// 求和方式1
Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
// 求和方式2
Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
// 求和方式3
Integer sum3 = list.stream().reduce(0, Integer::sum);
// 求乘积
Optional<Integer> product = list.stream().reduce((x, y) -> x * y);
// 求最大值方式1
Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
// 求最大值写法2
Integer max2 = list.stream().reduce(1, Integer::max);
System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
System.out.println("list求积:" + product.get());
System.out.println("list求最大值:" + max.get() + "," + max2);
}
}
输出结果:
list求和:29,29,29 list求积:2112 list求和:11,11
案例二:求所有员工的工资之和和最高工资。
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
personList.add(new Person("Owen", 9500, 25, "male", "New York"));
personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
// 求工资之和方式1:
Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
// 求工资之和方式2:
Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
(sum1, sum2) -> sum1 + sum2);
// 求工资之和方式3:
Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);
// 求最高工资方式1:
Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), Integer::max);
// 求最高工资方式2:
Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), (max1, max2 -> max1 > max2 ? max1 : max2);
System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
System.out.println("最高工资:" + maxSalary + "," + maxSalary2);
}
输出结果:
工资之和:49300,49300,49300 最高工资:9500,9500
3.6 收集(collect)
collect
,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。
collect
主要依赖java.util.stream.Collectors
类内置的静态方法。
3.6.1 归集(toList/toSet/toMap)
因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList
、toSet
和toMap
比较常用,另外还有toCollection
、toConcurrentMap
等复杂一些的用法。
下面用一个案例演示toList
、toSet
和toMap
:
public class StreamTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
Map<?,Person> map = personList.stream().filter(p>p.getSalary()>8000).collect(Collectors.toMap(Person::getName, p-> p));
System.out.println("toList:" + listNew);
System.out.println("toSet:" + set);
System.out.println("toMap:" + map);
}
}
运行结果:
toList:[6, 4, 6, 6, 20]
toSet:[4, 20, 6]
toMap:
3.6.2 统计(count/averaging)
Collectors
提供了一系列用于数据统计的静态方法:
- 计数:
count
- 平均值:
averagingInt
、averagingLong
、averagingDouble
- 最值:
maxBy
、minBy
- 求和:
summingInt
、summingLong
、summingDouble
- 统计以上所有:
summarizingInt
、summarizingLong
、summarizingDouble
案例:统计员工人数、平均工资、工资总额、最高工资。
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
// 求总数
Long count = personList.stream().collect(Collectors.counting());
// 求平均工资
Doubleaverage=personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
// 求最高工资
Optional<Integer>max=personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
// 求工资之和
Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
// 一次性统计所有信息
DoubleSummaryStatistics collect=personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));
System.out.println("员工总数:" + count);
System.out.println("员工平均工资:" + average);
System.out.println("员工工资总和:" + sum);
System.out.println("员工工资所有统计:" + collect);
}
}
运行结果:
员工总数:3 员工平均工资:7900.0
员工工资总和:23700
员工工资所有统计:DoubleSummaryStatistics
3.6.3 分组(partitioningBy/groupingBy)
- 分区:将
stream
按条件分为两个Map
,比如员工按薪资是否高于8000分为两部分。 - 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。
案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));
// 将员工按薪资是否高于8000分组
Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
// 将员工按性别分组
Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
// 将员工先按性别分组,再按地区分组
Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
System.out.println("员工按薪资是否大于8000分组情况:" + part);
System.out.println("员工按性别分组情况:" + group);
System.out.println("员工按性别、地区:" + group2);
}
}
输出结果:
员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]}
员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]}
员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}
3.6.4 接合(joining)
joining
可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
System.out.println("所有员工的姓名:" + names);
List<String> list = Arrays.asList("A", "B", "C");
String string = list.stream().collect(Collectors.joining("-"));
System.out.println("拼接后的字符串:" + string);
}
}
运行结果:
所有员工的姓名:Tom,Jack,Lily 拼接后的字符串:A-B-C
3.6.5 归约(reducing)
Collectors
类提供的reducing
方法,相比于stream
本身的reduce
方法,增加了对自定义归约的支持。
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
// 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)
Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
System.out.println("员工扣税薪资总和:" + sum);
// stream的reduce
Optional<Integer> sum2 =personList.stream().map(Person::getSalary).reduce(Integer::sum);
System.out.println("员工薪资总和:" + sum2.get());
}
}
运行结果:
员工扣税薪资总和:8700 员工薪资总和:23700
3.7 排序(sorted)
sorted,中间操作。有两种排序:
- sorted():自然排序,流中元素需实现Comparable接口
- sorted(Comparator com):Comparator排序器自定义排序
案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
personList.add(new Person("Lily", 8800, 26, "male", "New York"));
personList.add(new Person("Alisa", 9000, 26, "female", "New York"));
// 按工资升序排序(自然排序)
List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
.collect(Collectors.toList());
// 按工资倒序排序
List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
.map(Person::getName).collect(Collectors.toList());
// 先按工资再按年龄升序排序
List<String> newList3 = personList.stream()
.sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
.collect(Collectors.toList());
// 先按工资再按年龄自定义排序(降序)
List<String> newList4 = personList.stream().sorted((p1, p2) -> {
if (p1.getSalary() == p2.getSalary()) {
return p2.getAge() - p1.getAge();
} else {
return p2.getSalary() - p1.getSalary();
}
}).map(Person::getName).collect(Collectors.toList());
System.out.println("按工资升序排序:" + newList);
System.out.println("按工资降序排序:" + newList2);
System.out.println("先按工资再按年龄升序排序:" + newList3);
System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
}
}
运行结果:
按工资自然排序:[Lily, Tom, Sherry, Jack, Alisa]
按工资降序排序:[Sherry, Jack, Alisa,Tom, Lily]
先按工资再按年龄自然排序:[Sherry, Jack, Alisa, Tom, Lily]
先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]
3.8 提取/组合
流也可以进行合并、去重、限制、跳过等操作。
public class StreamTest {
public static void main(String[] args) {
String[] arr1 = { "a", "b", "c", "d" };
String[] arr2 = { "d", "e", "f", "g" };
Stream<String> stream1 = Stream.of(arr1);
Stream<String> stream2 = Stream.of(arr2);
// concat:合并两个流 distinct:去重
List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
// limit:限制从流中获得前n个数据
List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
// skip:跳过前n个数据
List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());
System.out.println("流合并:" + newList);
System.out.println("limit:" + collect);
System.out.println("skip:" + collect2);
}
}
运行结果:
流合并:[a, b, c, d, e, f, g]
limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
skip:[3, 5, 7, 9, 11]
4 Optional
从 Java 8 引入的一个很有趣的特性是 Optional 类。Optional 类主要解决的问题是臭名昭著的空指针异常(NullPointerException) —— 每个 Java 程序员都非常了解的异常。本质上,这是一个包含有可选值的包装类,这意味着 Optional 类既可以含有对象也可以为空。
Optional 是 Java 实现函数式编程的强劲一步,并且帮助在范式中实现。但是 Optional 的意义显然不止于此。
我们从一个简单的用例开始。在 Java 8 之前,任何访问对象方法或属性的调用都可能导致 NullPointerException:
String isocode = user.getAddress().getCountry().getIsocode().toUpperCase();
在这个小示例中,如果我们需要确保不触发异常,就得在访问每一个值之前对其进行明确地检查:
if (user != null) {
Address address = user.getAddress();
if (address != null) {
Country country = address.getCountry();
if (country != null) {
String isocode = country.getIsocode();
if (isocode != null) {
isocode = isocode.toUpperCase();
}
}
}
}
你看到了,这很容易就变得冗长,难以维护。
为了简化这个过程,我们来看看用 Optional 类是怎么做的。从创建和验证实例,到使用其不同的方法,并与其它返回相同类型的方法相结合,下面是见证 Optional 奇迹的时刻。
4.1创建 Optional 实例
重申一下,这个类型的对象可能包含值,也可能为空。你可以使用同名方法创建一个空的 Optional。
@Test(expected = NoSuchElementException.class)
public void whenCreateEmptyOptional_thenNull() {
Optional<User> emptyOpt = Optional.empty();
emptyOpt.get();
}
毫不奇怪,尝试访问 emptyOpt 变量的值会导致 NoSuchElementException。
你可以使用 of() 和 ofNullable() 方法创建包含值的 Optional。两个方法的不同之处在于如果你把 null 值作为参数传递进去,of() 方法会抛出 NullPointerException:
@Test(expected = NullPointerException.class)
public void whenCreateOfEmptyOptional_thenNullPointerException() {
Optional<User> opt = Optional.of(user);
}
你看,我们并没有完全摆脱 NullPointerException。因此,你应该明确对象不为 null 的时候使用 of()。
如果对象即可能是 null 也可能是非 null,你就应该使用 ofNullable() 方法:
Optional<User> opt = Optional.ofNullable(user);
4.2访问 Optional 对象的值
从 Optional 实例中取回实际值对象的方法之一是使用 get() 方法:
@Test
public void whenCreateOfNullableOptional_thenOk() {
String name = "John";
Optional<String> opt = Optional.ofNullable(name);
assertEquals("John", opt.get());
}
不过,你看到了,这个方法会在值为 null 的时候抛出异常。要避免异常,你可以选择首先验证是否有值:
@Test
public void whenCheckIfPresent_thenOk() {
User user = new User("[email protected]", "1234");
Optional<User> opt = Optional.ofNullable(user);
assertTrue(opt.isPresent());
assertEquals(user.getEmail(), opt.get().getEmail());
}
检查是否有值的另一个选择是 ifPresent() 方法。该方法除了执行检查,还接受一个Consumer(消费者) 参数,如果对象不是空的,就对执行传入的 Lambda 表达式:
opt.ifPresent( u -> assertEquals(user.getEmail(), u.getEmail()));
这个例子中,只有 user 用户不为 null 的时候才会执行断言。
接下来,我们来看看提供空值的方法。
4.3返回默认值
Optional 类提供了 API 用以返回对象值,或者在对象为空的时候返回默认值。
这里你可以使用的第一个方法是 orElse(),它的工作方式非常直接,如果有值则返回该值,否则返回传递给它的参数值:
@Test
public void whenEmptyValue_thenReturnDefault() {
User user = null;
User user2 = new User("[email protected]", "1234");
User result = Optional.ofNullable(user).orElse(user2);
assertEquals(user2.getEmail(), result.getEmail());
}
这里 user 对象是空的,所以返回了作为默认值的 user2。
如果对象的初始值不是 null,那么默认值会被忽略:
@Test
public void whenValueNotNull_thenIgnoreDefault() {
User user = new User("[email protected]","1234");
User user2 = new User("[email protected]", "1234");
User result = Optional.ofNullable(user).orElse(user2);
assertEquals("[email protected]", result.getEmail());
}
第二个同类型的 API 是 orElseGet() —— 其行为略有不同。这个方法会在有值的时候返回值,如果没有值,它会执行作为参数传入的 Supplier(供应者) 函数式接口,并将返回其执行结果:
User result = Optional.ofNullable(user).orElseGet( () -> user2);
orElse() 和 orElseGet() 的不同之处
乍一看,这两种方法似乎起着同样的作用。然而事实并非如此。我们创建一些示例来突出二者行为上的异同。
我们先来看看对象为空时他们的行为:
@Test
public void givenEmptyValue_whenCompare_thenOk() {
User user = null;
logger.debug("Using orElse");
User result = Optional.ofNullable(user).orElse(createNewUser());
logger.debug("Using orElseGet");
User result2 = Optional.ofNullable(user).orElseGet(() -> createNewUser());
}
private User createNewUser() {
logger.debug("Creating New User");
return new User("[email protected]", "1234");
}
上面的代码中,两种方法都调用了 createNewUser() 方法,这个方法会记录一个消息并返回 User 对象。
代码输出如下:
Using orElse
Creating New User
Using orElseGet
Creating New User
由此可见,当对象为空而返回默认对象时,行为并无差异。
我们接下来看一个类似的示例,但这里 Optional 不为空:
@Test
public void givenPresentValue_whenCompare_thenOk() {
User user = new User("[email protected]", "1234");
logger.info("Using orElse");
User result = Optional.ofNullable(user).orElse(createNewUser());
logger.info("Using orElseGet");
User result2 = Optional.ofNullable(user).orElseGet(() -> createNewUser());
}
这次的输出:
Using orElse
Creating New User
Using orElseGet
这个示例中,两个 Optional 对象都包含非空值,两个方法都会返回对应的非空值。不过,orElse() 方法仍然创建了 User 对象。与之相反,orElseGet() 方法不创建 User 对象。
在执行较密集的调用时,比如调用 Web 服务或数据查询,这个差异会对性能产生重大影响。
4.4返回异常
除了 orElse() 和 orElseGet() 方法,Optional 还定义了 orElseThrow() API —— 它会在对象为空的时候抛出异常,而不是返回备选的值:
@Test(expected = IllegalArgumentException.class)
public void whenThrowException_thenOk() {
User result = Optional.ofNullable(user)
.orElseThrow( () -> new IllegalArgumentException());
}
这里,如果 user 值为 null,会抛出 IllegalArgumentException。
这个方法让我们有更丰富的语义,可以决定抛出什么样的异常,而不总是抛出 NullPointerException。
现在我们已经很好地理解了如何使用 Optional,我们来看看其它可以对 Optional 值进行转换和过滤的方法。推荐阅读:面试题阶段汇总
4.5转换值
有很多种方法可以转换 Optional 的值。我们从 map() 和 flatMap() 方法开始。
先来看一个使用 map() API 的例子:
@Test
public void whenMap_thenOk() {
User user = new User("[email protected]", "1234");
String email = Optional.ofNullable(user)
.map(u -> u.getEmail()).orElse("[email protected]");
assertEquals(email, user.getEmail());
}
map() 对值应用(调用)作为参数的函数,然后将返回的值包装在 Optional 中。这就使对返回值进行链试调用的操作成为可能 —— 这里的下一环就是 orElse()。
相比这下,flatMap() 也需要函数作为参数,并对值调用这个函数,然后直接返回结果。
下面的操作中,我们给 User 类添加了一个方法,用来返回 Optional:
public class User {
private String position;
public Optional<String> getPosition() {
return Optional.ofNullable(position);
}
//...
}
既然 getter 方法返回 String 值的 Optional,你可以在对 User 的 Optional 对象调用 flatMap() 时,用它作为参数。其返回的值是解除包装的 String 值:
@Test
public void whenFlatMap_thenOk() {
User user = new User("[email protected]", "1234");
user.setPosition("Developer");
String position = Optional.ofNullable(user)
.flatMap(u -> u.getPosition()).orElse("default");
assertEquals(position, user.getPosition().get());
}
4.6过滤值
除了转换值之外,Optional 类也提供了按条件“过滤”值的方法。
filter() 接受一个 Predicate 参数,返回测试结果为 true 的值。如果测试结果为 false,会返回一个空的 Optional。
来看一个根据基本的电子邮箱验证来决定接受或拒绝 User(用户) 的示例:
@Test
public void whenFilter_thenOk() {
User user = new User("[email protected]", "1234");
Optional<User> result = Optional.ofNullable(user)
.filter(u -> u.getEmail() != null && u.getEmail().contains("@"));
assertTrue(result.isPresent());
}
如果通过过滤器测试,result 对象会包含非空值。推荐阅读:面试题阶段汇总
4.7Optional 类的链式方法
为了更充分的使用 Optional,你可以链接组合其大部分方法,因为它们都返回相同类似的对象。
我们使用 Optional 重写最早介绍的示例。
首先,重构类,使其 getter 方法返回 Optional 引用:
public class User {
private Address address;
public Optional<Address> getAddress() {
return Optional.ofNullable(address);
}
// ...
}
public class Address {
private Country country;
public Optional<Country> getCountry() {
return Optional.ofNullable(country);
}
// ...
}
上面的嵌套结构可以用下面的图来表示:
现在可以删除 null 检查,替换为 Optional 的方法:
@Test
public void whenChaining_thenOk() {
User user = new User("[email protected]", "1234");
String result = Optional.ofNullable(user)
.flatMap(u -> u.getAddress())
.flatMap(a -> a.getCountry())
.map(c -> c.getIsocode())
.orElse("default");
assertEquals(result, "default");
}
上面的代码可以通过方法引用进一步缩减:
String result = Optional.ofNullable(user)
.flatMap(User::getAddress)
.flatMap(Address::getCountry)
.map(Country::getIsocode)
.orElse("default");
结果现在的代码看起来比之前采用条件分支的冗长代码简洁多了。
4.9Java 9 增强
我们介绍了 Java 8 的特性,Java 9 为 Optional 类添加了三个方法:or()、ifPresentOrElse() 和 stream()。
or() 方法与 orElse() 和 orElseGet() 类似,它们都在对象为空的时候提供了替代情况。or() 的返回值是由 Supplier 参数产生的另一个 Optional 对象。
如果对象包含值,则 Lambda 表达式不会执行:
@Test
public void whenEmptyOptional_thenGetValueFromOr() {
User result = Optional.ofNullable(user)
.or( () -> Optional.of(new User("default","1234"))).get();
assertEquals(result.getEmail(), "default");
}
上面的示例中,如果 user 变量是 null,它会返回一个 Optional,它所包含的 User 对象,其电子邮件为 “default”。
ifPresentOrElse() 方法需要两个参数:一个 Consumer 和一个 Runnable。如果对象包含值,会执行 Consumer 的动作,否则运行 Runnable。
如果你想在有值的时候执行某个动作,或者只是跟踪是否定义了某个值,那么这个方法非常有用:
Optional.ofNullable(user).ifPresentOrElse( u -> logger.info("User is:" + u.getEmail()),
() -> logger.info("User not found"));
最后介绍的是新的 stream() 方法,它通过把实例转换为 Stream 对象,让你从广大的 Stream API 中受益。如果没有值,它会得到空的 Stream;有值的情况下,Stream 则会包含单一值。
我们来看一个把 Optional 处理成 Stream 的例子:
@Test
public void whenGetStream_thenOk() {
User user = new User("[email protected]", "1234");
List<String> emails = Optional.ofNullable(user)
.stream()
.filter(u -> u.getEmail() != null && u.getEmail().contains("@"))
.map( u -> u.getEmail())
.collect(Collectors.toList());
assertTrue(emails.size() == 1);
assertEquals(emails.get(0), user.getEmail());
}
这里对 Stream 的使用带来了其 filter()、map() 和 collect() 接口,以获取 List。
4.10 Optional 应该怎样用?
在使用 Optional 的时候需要考虑一些事情,以决定什么时候怎样使用它。
重要的一点是 Optional 不是 Serializable。因此,它不应该用作类的字段。
如果你需要序列化的对象包含 Optional 值,Jackson 库支持把 Optional 当作普通对象。也就是说,Jackson 会把空对象看作 null,而有值的对象则把其值看作对应域的值。这个功能在 jackson-modules-java8 项目中。
它在另一种情况下也并不怎么有用,就是在将其类型用作方法或构建方法的参数时。这样做会让代码变得复杂,完全没有必要:
User user = new User("[email protected]", "1234", Optional.empty());
使用重载方法来处理非要的参数要容易得多。
Optional 主要用作返回类型。在获取到这个类型的实例后,如果它有值,你可以取得这个值,否则可以进行一些替代行为。
Optional 类有一个非常有用的用例,就是将其与流或其它返回 Optional 的方法结合,以构建流畅的API。
我们来看一个示例,使用 Stream 返回 Optional 对象的 findFirst() 方法:
@Test
public void whenEmptyStream_thenReturnDefaultOptional() {
List<User> users = new ArrayList<>();
User user = users.stream().findFirst().orElse(new User("default", "1234"));
assertEquals(user.getEmail(), "default");
}
总结
Optional 是 Java 语言的有益补充 —— 它旨在减少代码中的 NullPointerExceptions,虽然还不能完全消除这些异常。
它也是精心设计,自然融入 Java 8 函数式支持的功能。
总的来说,这个简单而强大的类有助于创建简单、可读性更强、比对应程序错误更少的程序。
标签:stream,personList,感受,之美,Person,JavaLambda,new,Optional,public From: https://www.cnblogs.com/wowosong/p/17276214.html