首页 > 编程语言 >Qz学算法-数据结构篇(排序算法--冒泡、选择)

Qz学算法-数据结构篇(排序算法--冒泡、选择)

时间:2023-03-12 12:03:10浏览次数:39  
标签:arr -- 复杂度 Qz int 算法 println 排序

排序算法

排序的概念

排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程

分类

排序的分类:

  1. 内部排序:
    指将需要处理的所有数据都加载到内部存储器中进行排序
  2. 外部排序法: 数据量过大,无法全部加载到内存中,需要借助外部存储进行排序。
  3. 常见的排序算法分类(见图)

Qz学算法-数据结构篇(排序算法--冒泡、选择)_空间复杂度

算法的时间复杂度

度量一个程序(算法)执行时间的两种方法

  1. 事后统计的方法
    这种方法可行,但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬住、软件等环境因素,这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。
  2. 事前估算的方法
    通过分析某个算法的时间复杂度来判断哪个算法更优

1.时间频度

时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T()。

案例说明

比如计算1-100所有数字之和,我们设计两种算法:

int total = 0;
int end = 100;
//使用for循环计算
for (int i = 1; i <= end; i++){
total++;
}

T(n)=n+1;

//直接计算
total=(1+end)*end/2;

T(n)=1

计算时间复杂度可以忽略常数项

Qz学算法-数据结构篇(排序算法--冒泡、选择)_选择_02

结论:

2n+20和2n随着n变大,执行曲线无限接近,20可以忽略 3n+10和3n随着n变大,执行曲线无限接近,10可以忽路

计算时间复杂度可以忽略低次项

结论:

2n2+3n+10和2n2随着n变大,执行曲线无限接近,可以忍略3n+10 n2+5n+20和n2随着n变大,执行曲线无限接近,可以忽略5n+20

计算时间复杂度可以忽略系数

Qz学算法-数据结构篇(排序算法--冒泡、选择)_冒泡_03

结论: 随着n值变大,5n2+7n和3n2+2n,执行曲线重合,说明这种情况下,5和3可以忽略。 而n3+5n和6n3+4n,执行曲线分离,说明多少次方式关键

2.时间复杂度

  1. 一般情况下,算法中的基本操作语句的重复执行次数是问题规模的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。
  2. T(n)不同,但时间复杂度可能相同。如:T(n)=n2+7n+6与T(n)=3n2+2n+2它们的T()不同,但时间复杂度相同,都为0(n).
  3. 计算时间复杂度的方法:
  • 用常数1代替运行时间中的所有加法常数
  • 修改后的运行次数函数中,只保留最高阶项
  • 去除最高阶项的系数

常见的时间复杂度

Qz学算法-数据结构篇(排序算法--冒泡、选择)_冒泡_04

说明

Qz学算法-数据结构篇(排序算法--冒泡、选择)_选择_05

从图中可见我们应该尽可能避兔使用指数阶的算法

  • 常数阶O(1)
    无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是0(1)
int i 1;
int j=2;
4+i
j+:
int m =i+j;

上述代码在执行的时候,它消耗的时间并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

  • 对数阶
    O(log2​n)
int i = 1;
while(i<n){
i*=2;
}

说明:在while循环里面,每次都将i乘以2,乘完之后,i距离n就越来越近了。假设循环x次之后,i就大于2了,此时这个循环就退出了,也就是说2的x次方等于n,那么

x=log2​n

也就是说当循环

log2​n

次以后,这个代码就结束了。因此这个代码的时间复杂度为:

O(log2​n)

O(log2​n)

的这个2时间上是根据代码变化的,i=i*3,则是

O(log3​n)

.

如果

N=ax(a>0,a=1)

即a的x次方等于N(a>0且a≠1),那么数a叫做以a为底N的对数(logarithm)记作

x=logaN

其中,a叫做对数的底数,N叫做真数,x叫做以a为底的对数。

  • 线性阶O(n)
for (int i = 0; i < n; i++) {
j = i;
j++;
}

说明:

这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度

  • 线性对数阶
    O(nlogN)
for (m = 1; m < n; m++) {
i = 1:
while (i < n) {
i = i * 2;
}
}

说明:线性对数阶O(nlogN)其实非常容易理解,将时间复杂度为O(Iogn)的代码循环N遍的话,那么它的时间复杂度就是n*O(logN),也就是了O(nlogN)

  • 平方阶
    O(n2)
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= n; j++) {
j = i;
j++;
}
}

说明:平方阶O(n^2)就更容易理解了,如果把O)的代码再嵌套循环一遍,它的时间复杂度就是O(n^2),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是O(nn),即O(n^2)如果将其中一层循环的n改成m,那它的时间复杂度就变成了O(mn)

3.平均时间复杂度和最坏时间复杂度

  1. 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行
  2. 时间最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。这样做的原因是:最坏情况 下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
  3. 平均时间复杂度和最坏时间复杂度是否一致,和算法有关

算法的空间复杂度

1.基本介绍

  1. 类似王时间复杂度的过论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
  2. 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模有关,它随着的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况
  3. 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis,,memcache)和算法(基数排序)本质就是用空间换时间

1.冒泡排序

1.基本介绍

冒泡排序(Bubble Sorting)的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就象水底下的气泡一样逐渐 向上冒。

因为排序的过程中,各元素不断接近自己的位置,如果一趟比较下来没有进行过交换,就说明序列有序,因此要在排序过程中设置一个标志flag判断元素是否进行过交换。从而减少不必要的比较。

2.应用实例

Qz学算法-数据结构篇(排序算法--冒泡、选择)_冒泡_06

 我们举一个具体的案例来说明冒泡法。我们将五个无序的数:3,9,-1,10,-2使用冒泡排序法将其排成一个从小到大的有序数列。

3.代码实现

public class BubbleSort {
public static void main(String[] args) {
int arr [] = {3,9,-1,10,-2};

//为了容量理解,我们把冒泡排序的演变过程,给大家展示
//时间复杂度是O(n^2)
//第一趟排序,就是将最大的数排在最后
int temp = 0;//临时变量
for (int i = 0; i < arr.length-1; i++) {
for (int j = 0; j < arr.length-1-i; j++) {
//如果前面的数比后面的数大,则交换
if(arr[i]>arr[i+1]){
temp = arr[i];
arr[i] = arr[i+1];
arr[i+1]=temp;
}
}
}

System.out.println("第一趟排序后的数组");
System.out.println(Arrays.toString(arr));

//第二趟排序,就是将第二大的数排在倒数第二位
for (int i = 0; i < arr.length-1-1; i++) {
//如果前面的数比后面的数大,则交换
if(arr[i]>arr[i+1]){
temp = arr[i];
arr[i] = arr[i+1];
arr[i+1]=temp;
}
}

System.out.println("第二趟排序后的数组");
System.out.println(Arrays.toString(arr));

//第三趟排序,就是将第三大的数排在倒数第三位
for (int i = 0; i < arr.length-1-2; i++) {
//如果前面的数比后面的数大,则交换
if(arr[i]>arr[i+1]){
temp = arr[i];
arr[i] = arr[i+1];
arr[i+1]=temp;
}
}
System.out.println("第三趟排序后的数组");
System.out.println(Arrays.toString(arr));

//第四趟排序,就是将第三大的数排在倒数第三位
for (int i = 0; i < arr.length-1-3; i++) {
//如果前面的数比后面的数大,则交换
if(arr[i]>arr[i+1]){
temp = arr[i];
arr[i] = arr[i+1];
arr[i+1]=temp;
}
}
System.out.println("第四趟排序后的数组");
System.out.println(Arrays.toString(arr));


}
}

小结冒泡排序规则

(1)一共进行数组的大小-1次大的循环

(2)每一趟排序的次数在逐渐的减少

(3)如果我们发现在某趟排序中,没有发生一次交换,可以提前结束冒泡排序。这个就是优化

升级=>引入一个变量,如果有交换就为true,没有交换就是false

int arr [] = {3,9,-1,10,-2};

//为了容量理解,我们把冒泡排序的演变过程,给大家展示
//第一趟排序,就是将最大的数排在最后
int temp = 0;//临时变量
boolean flag =false; //标识变量,表示是否已经进行交换
for (int i = 0; i < arr.length-1; i++) {
for (int j = 0; j < arr.length-1-i; j++) {
//如果前面的数比后面的数大,则交换
if(arr[i]>arr[i+1]){
flag =true
temp = arr[i];
arr[i] = arr[i+1];
arr[i+1]=temp;
}
}
if (flag==false){ //在一趟排序中,一次交换都没有发生
break;
}else{
flag = false; //重置flag,进行下次判断
}
}

封装成一个方法

public static void bubbleSort ( int[] arr){
int temp = 0;//临时变量
boolean flag = false; //标识变量,表示是否已经进行交换
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - 1 - i; j++) {
//如果前面的数比后面的数大,则交换
if (arr[i] > arr[i + 1]) {
flag = true;
temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
}
}
if (flag == false) { //在一趟排序中,一次交换都没有发生
break;
} else {
flag = false; //重置flag,进行下次判断
}
}
}

2.选择排序

1.基本介绍

选择式排序也属于内部排序法,是从欲排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的。

2.基本思想

选择排序(select sorting)也是一种简单的排序方法。

它的基本思想是:第一次从arr[0]arr[n-1]中选取最小值,与arr[0]交换,

第二次从arr[1]arr[n-1]中选取最小值,与arr[1]交换,

第三次从arr[2]~arr[n-1]中选取最小值,与arr[2]交换,…,

第i次从arr[i-1]~arr[n-1]中选取最小值,与arr[i-1]交换,…,

第n-1次从arr[n-2]~arr[n-1]中选取最小值,与arr[n-2]交换,

总共通过n-1次,得到一个按排序码从小到大排列的有序序列。

3.思路分析

Qz学算法-数据结构篇(排序算法--冒泡、选择)_冒泡_07

4.需求引入

有一群牛,颜值分别是101,34,119,1请使用选择排序从低到高进行排序[101,34,119,1]

5.代码实现

逐步推导

public class SelectSort {
public static void main(String[] args) {
int[] arr = {101, 34, 119, 1};

System.out.println("排序前");
System.out.println(Arrays.toString(arr));
System.out.println("排序后");
selectSort(arr);
}

//选择排序
public static void selectSort(int[] arr) {
//使用逐步推导的方式来,讲解选择排序
//第1轮
//原始的数组: 101,34,119,1
//第一轮排序:1,34,119,101
//算法先简单-一》做复杂,就是可以把一个复杂的算法,拆分成简单的问题-》逐步解决

//假定最小值是第一个
int minIndex = 0;
int min = arr[0];
for (int i = 0 + 1; i < arr.length; i++) {
if (min > arr[i]) {//说明假定的最小值,并不是最小
min = arr[i];//重置min
minIndex = i;//重置minIndex

}
}
//将最小值,放在arr[0],即交换
if (minIndex != 0) {
arr[minIndex] = arr[0];
arr[0] = min;
}

System.out.println("第一轮后~~");
System.out.println(Arrays.toString(arr));


//第二轮
minIndex = 1;
min = arr[1];
for (int i = 1 + 1; i < arr.length; i++) {
if (min > arr[i]) {//说明假定的最小值,并不是最小
min = arr[i];//重置min
minIndex = i;//重置minIndex

}
}

if (minIndex != 1) {
arr[minIndex] = arr[1];
arr[1] = min;
}

System.out.println("第二轮后~~");
System.out.println(Arrays.toString(arr));

//第三轮
minIndex = 2;
min = arr[2];
for (int i = 2 + 1; i < arr.length; i++) {
if (min > arr[i]) {//说明假定的最小值,并不是最小
min = arr[i];//重置min
minIndex = i;//重置minIndex

}
}

if (minIndex != 2) {
arr[minIndex] = arr[2];
arr[2] = min;
}

System.out.println("第三轮后~~");
System.out.println(Arrays.toString(arr));

}
}

在推导的过程,我们发现了规律,因此,可以使用for来解决

public class SelectSort {
public static void main(String[] args) {
int[] arr = {101, 34, 119, 1};

System.out.println("排序前");
System.out.println(Arrays.toString(arr));
System.out.println("排序后");
selectSort(arr);
}

//选择排序
public static void selectSort(int[] arr) {
//使用逐步推导的方式来,讲解选择排序
//第1轮
//原始的数组: 101,34,119,1
//第一轮排序:1,34,119,101
//算法先简单-一》做复杂,就是可以把一个复杂的算法,拆分成简单的问题-》逐步解决

for (int i = 0;i<arr.length -1;i++){
//假定最小值是第一个
int minIndex = i;
int min = arr[i];
for (int j = i + 1; j < arr.length; j++) {
if (min > arr[j]) {//说明假定的最小值,并不是最小
min = arr[j];//重置min
minIndex = j;//重置minIndex

}
}
//将最小值,放在arr[0],即交换
if (minIndex != i) {
arr[minIndex] = arr[i];
arr[i] = min;
}
System.out.println("第"+i+1+"轮后~~");
System.out.println(Arrays.toString(arr));
}

标签:arr,--,复杂度,Qz,int,算法,println,排序
From: https://blog.51cto.com/u_15915681/6111162

相关文章

  • MeAndMyGirfrend靶机
    使用kali作为......
  • 一入python深似海,从此妹纸是路人(二)
    一、列表1.列表的切片[开始标签:结束标签:步长]开始标签:结束标签是左闭右开(左包含右不包含)下标----位置,默认是从0开始(从左到右)从右到左的下标,第一个下标为-1lst=......
  • 接口报500服务器内部错误
    在实际工作中,我遇到过以下几个情况接口报500情景1代码逻辑错误,数据库的增删查改(这个很好解决,自己debug-下就知道了)情景2县体代码逻辑没问题。看看接只上的注解是否有......
  • m通信系统中基于相关峰检测的信号定时同步算法的FPGA实现
    1.算法描述       定时同步方法主要分为基于数据辅助和非数据辅助两类。前者是在发送有效数据前发送一段具有某种特征的训练或导频符号,接收端根据符号特征建立同步......
  • 用python编写程序,使用筛选法查找并输出小于1000的所有素数
    #创建一个布尔数组,其中的值都是True,数组下标为i表示数字i是否为素数prime=[Trueforiinrange(1000)]#0和1不是素数,因此将它们的值设置为Falseprime[0]=Falseprim......
  • 《SQL与数据库基础》20. 主从复制
    目录主从复制原理搭建主库配置从库配置测试本文以MySQL为例主从复制主从复制是指将主数据库的DDL和DML操作通过二进制日志传到从库服务器中,然后在从库上对这些......
  • 数据结构与算法2
    树的术语及定义          实现  节点与引用,程序         ......
  • Javadoc工具的使用
    Java提供了Javadoc工具,通过这个工具可以使你编写的代码生成一份API文档,前提是你已经为你的程序提供了文档注释。下面Javadoc工具使用的步骤:在你的代码中添加文档注释pub......
  • Unity中使用Timer实现延迟调用函数
    需求背景在Unity中实现延迟调用函数的方法,据我所知有三种使用协程中的yieldreturn使用Invoke使用DoTween中的Sequence但是如果我想一次性添加多个函数,并且在每个函......
  • 个人数据保全计划:(2)NAS基础知识
    前言距离去年国庆入手了NAS至今有好几个月时间了,NAS折腾起来有点麻烦,且实际作用因人而异,并没有想象中的好用,所以说好的这个系列一直没有更新~还有另一方面的原因,这些NAS......