首页 > 编程语言 >代码随想录算法训练营Day18 二叉树|  654.最大二叉树  617.合并二叉树  700.二叉搜索树中的搜索  98.验证二叉搜索树

代码随想录算法训练营Day18 二叉树|  654.最大二叉树  617.合并二叉树  700.二叉搜索树中的搜索  98.验证二叉搜索树

时间:2023-02-20 18:55:06浏览次数:54  
标签:TreeNode val t1 搜索 二叉树 二叉 root 节点

654.最大二叉树

题目链接:654.最大二叉树
给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建:

  1. 创建一个根节点,其值为 nums 中的最大值。
  2. 递归地在最大值 左边 的 子数组前缀上 构建左子树。
  3. 递归地在最大值 右边 的 子数组后缀上 构建右子树。
    返回 nums 构建的 最大二叉树 。

总体思路

AltText|500
构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。

  • 确定递归函数的参数和返回值
    参数传入的是存放元素的数组,返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。
    代码如下:
TreeNode* constructMaximumBinaryTree(vector<int>& nums)
  • 确定终止条件
    题目中说了输入的数组大小一定是大于等于1的,所以我们不用考虑小于1的情况,那么当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了。
    那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回。
    代码如下:
TreeNode* node = new TreeNode(0);
if (nums.size() == 1) {
    node->val = nums[0];
    return node;
}
  • 确定单层递归的逻辑
    这里有三步工作
  1. 先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。
    代码如下:
int maxValue = 0;
int maxValueIndex = 0;
for (int i = 0; i < nums.size(); i++) {
    if (nums[i] > maxValue) {
        maxValue = nums[i];
        maxValueIndex = i;
    }
}
TreeNode* node = new TreeNode(0);
node->val = maxValue;
  1. 最大值所在的下标左区间 构造左子树
    这里要判断maxValueIndex > 0,因为要保证左区间至少有一个数值。
    代码如下:
if (maxValueIndex > 0) {
    vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
    node->left = constructMaximumBinaryTree(newVec);
}
  1. 最大值所在的下标右区间 构造右子树
    判断maxValueIndex < (nums.size() - 1),确保右区间至少有一个数值。
    代码如下:
if (maxValueIndex < (nums.size() - 1)) {
    vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
    node->right = constructMaximumBinaryTree(newVec);
}

这样我们就分析完了,整体代码如下:

class Solution {
public:
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        TreeNode* node = new TreeNode(0);
        if (nums.size() == 1) {
            node->val = nums[0];
            return node;
        }
        // 找到数组中最大的值和对应的下标
        int maxValue = 0;
        int maxValueIndex = 0;
        for (int i = 0; i < nums.size(); i++) {
            if (nums[i] > maxValue) {
                maxValue = nums[i];
                maxValueIndex = i;
            }
        }
        node->val = maxValue;
        // 最大值所在的下标左区间 构造左子树
        if (maxValueIndex > 0) {
            vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
            node->left = constructMaximumBinaryTree(newVec);
        }
        // 最大值所在的下标右区间 构造右子树
        if (maxValueIndex < (nums.size() - 1)) {
            vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
            node->right = constructMaximumBinaryTree(newVec);
        }
        return node;
    }
};

617.合并二叉树

题目链接:617.合并二叉树
给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。
你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。

总体思路

二叉树使用递归,就要想使用前中后哪种遍历方式?
本题使用哪种遍历都是可以的!
我们下面以前序遍历为例。
递归三部曲

  1. 确定递归函数的参数和返回值:
    首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。
    代码如下:
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
  1. 确定终止条件:
    因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。
    反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。
    代码如下:
if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
  1. 确定单层递归的逻辑:
    单层递归的逻辑就比较好写了,这里我们重复利用一下t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。
    那么单层递归中,就要把两棵树的元素加到一起。
t1->val += t2->val;

接下来t1 的左子树是:合并 t1左子树 t2左子树之后的左子树。
t1 的右子树:是 合并 t1右子树 t2右子树之后的右子树。
最终t1就是合并之后的根节点。
代码如下:

t1->left = mergeTrees(t1->left, t2->left);
t1->right = mergeTrees(t1->right, t2->right);
return t1;

此时前序遍历,完整代码就写出来了,如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->val += t2->val;                             // 中
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        return t1;
    }
};

700.二叉搜索树中的搜索

题目链接: 700.二叉搜索树中的搜索
给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。

总体思路

二叉搜索树是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉搜索树
    这就决定了,二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。
    递归三部曲
  1. 确定递归函数的参数和返回值
    递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。
    代码如下:
TreeNode* searchBST(TreeNode* root, int val)
  1. 确定终止条件
    如果root为空,或者找到这个数值了,就返回root节点。
    if (root == NULL || root->val == val) return root;
  2. 确定单层递归的逻辑
    看看二叉搜索树的单层递归逻辑有何不同。
    因为二叉搜索树的节点是有序的,所以可以有方向的去搜索。
    如果root->val > val,搜索左子树,如果root->val < val,就搜索右子树,最后如果都没有搜索到,就返回NULL。
    代码如下:
TreeNode* result = NULL;
if (root->val > val) result = searchBST(root->left, val);
if (root->val < val) result = searchBST(root->right, val);
return result;

很多录友写递归函数的时候 习惯直接写 searchBST(root->left, val),却忘了 递归函数还有返回值。
递归函数的返回值是什么? 是 左子树如果搜索到了val,要将该节点返回。 如果不用一个变量将其接住,那么返回值不就没了。
所以要 result = searchBST(root->left, val)
整体代码如下:

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        if (root == NULL || root->val == val) return root;
        TreeNode* result = NULL;
        if (root->val > val) result = searchBST(root->left, val);
        if (root->val < val) result = searchBST(root->right, val);
        return result;
    }
};

98.验证二叉搜索树

题目链接:98.验证二叉搜索树
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:

  • 节点的左子树只包含小于当前节点的数。
  • 节点的右子树只包含大于当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。
    有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。

递归法

可以递归中序遍历将二叉搜索树转变成一个数组,代码如下:

vector<int> vec;
void traversal(TreeNode* root) {
    if (root == NULL) return;
    traversal(root->left);
    vec.push_back(root->val); // 将二叉搜索树转换为有序数组
    traversal(root->right);
}

然后只要比较一下,这个数组是否是有序的,注意二叉搜索树中不能有重复元素

traversal(root);
for (int i = 1; i < vec.size(); i++) {
    // 注意要小于等于,搜索树里不能有相同元素
    if (vec[i] <= vec[i - 1]) return false;
}
return true;

整体代码如下:

class Solution {
private:
    vector<int> vec;
    void traversal(TreeNode* root) {
        if (root == NULL) return;
        traversal(root->left);
        vec.push_back(root->val); // 将二叉搜索树转换为有序数组
        traversal(root->right);
    }
public:
    bool isValidBST(TreeNode* root) {
        vec.clear(); // 不加这句在leetcode上也可以过,但最好加上
        traversal(root);
        for (int i = 1; i < vec.size(); i++) {
            // 注意要小于等于,搜索树里不能有相同元素
            if (vec[i] <= vec[i - 1]) return false;
        }
        return true;
    }
};
  • 陷阱1
    不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了
    我们要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点。所以以上代码的判断逻辑是错误的。
  • 陷阱2
    样例中最小节点 可能是int的最小值,如果这样使用最小的int来比较也是不行的。
    此时可以初始化比较元素为longlong的最小值。

标签:TreeNode,val,t1,搜索,二叉树,二叉,root,节点
From: https://www.cnblogs.com/bailichangchuan/p/17138523.html

相关文章