五、横向对比
排序
# 列表
a.sort() # 修改原列表,返回值为None!!!!!这里很容易出错
sorted(a) # 生成新的列表
# 嵌套列表的排序(若是对字典排序,需先用list()转成列表形式)
li = [['A', 90], ['B', 20], ['C', 50]]
# 利用sorted()函数中的key属性重新建立排序规则
li = sorted(li, key=lambda x: x[1], reverse=True)
# numpy
#numpy.sort()函数返回输入数组的排序副本
#numpy.sort(a, axis, kind, order)
#axis: 沿着它排序数组的轴,如果没有数组会被展开,沿着最后的轴排序, axis=0 按列排序,axis=1 按行排序
#kind: 默认为'quicksort'(快速排序)
#order: 如果数组包含字段,则是要排序的字段
a = np.array([[3, 7], [9, 1]])
print('原数组:')
print(a)
print('调用sort() 函数:')
print(np.sort(a))
print('按列排序:')
print(np.sort(a, axis=0))
# Series
se.sort_values(ascending=False, inplace=True) #注意Series排序没有by参数
# dataframe
# 根据值排序
df.sort_values(by='A')
df.sort_values(by='A', ascending=False) # 逆序,默认升序
df.sort_values(by='A', inplace=True) # 改变原df
df.sort_values(by=['A', 'B'])
# 根据index排序
df.sort_index(ascending=False) # 用法与上面基本一致,只是没有by
逆序排序参数
列表:reverse=True
numpy、pandas: ascending=False
字典遍历和dataframe遍历的区别
# 字典遍历
for eachItem in dict1.items():
print(eachItem)
# Series遍历
for index, value in se.iteritems():
print(index) # 索引名
print(value) # 值
# dataframe遍历(分按行遍历和按列遍历)
# 按行遍历
for index, row in df.iterrows():
print(index) # 行名
print(row) # 每一行,为Series
# 按列遍历
for index,column in df.iteritems():
print(index) # 列名
print(column) # 每一列,为Series
列表和集合删除元素
remove | pop | del | discard | |
---|---|---|---|---|
列表 | 返回None;若不存在会报错 | 返回删除元素;参数默认为0,表示元素下标,超出会报错 | 例:del member[1] | 无 |
集合 | 同上 | 同上 | 无 | 返回None; 若不存在不会报错 |
numpy删除元素
np.delete(a, index, [axis=?])
a = np.arange(12).reshape(3, 4)
print('第一个数组:')
print(a)
print('未传递Axis参数。在插入之前输入数组会被展开。')
print(np.delete(a, 5)) # 5是展开之后的索引
print('删除第二列:')
print(np.delete(a, 1, axis=1)) # 1是列索引
'''
第一个数组:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
未传递Axis参数。在插入之前输入数组会被展开。
[ 0 1 2 3 4 6 7 8 9 10 11]
删除第二列:
[[ 0 2 3]
[ 4 6 7]
[ 8 10 11]]
'''
pandas删除行、列
df.drop
- 删除行
# 通过行名称删除:
df = df.drop(['1', '2']) # 不指定axis默认为0
df.drop(['1', '3'], inplace=True) # 注意若多行有相同行名,都删除
# 通过行号删除
df.drop(df.index[0], inplace=True) # 删除第1行
df.drop(df.index[0:3], inplace=True) # 删除前3行
df.drop(df.index[[0, 2]], inplace=True) # 删除第1第3行
# 通过过滤条件进行切片(实际应用时一般用)
chooses = df['B'].drop_duplicates().index
df.loc[chooses]
- 删除列
del df['A'] # 删除A列,会就地修改
df = df.drop(['B', 'C'], axis=1) # drop不会就地修改,创建副本返回
df.drop(['B', 'C'], axis=1, inplace=True) # inplace=True会就地修改
过滤空值
-
numpy 用np.isnan
a = np.array([np.nan, 1, 2, np.nan, 3, 4, 5]) # ~取补运算符过滤NaN print('非空过滤数组:') print(a[~np.isnan(a)])
-
pandas
df = df[df['one'].isnull()] df = df[df['one'].notnull()] df = df.dropna() # 删除全部是空值的行 df = df.dropna(subset=['one']) # 删除某一列是空值的行
pd开头的方法
- pd.DataFrame / pd.Series
- pd.set_option
- pd.read_csv / pd.read_excel
- pd.concat
- pd.merge
- pd.qcut
- pd.get_dummies
- pd.pivot_table
- pd.crosstab
prefix/suffixes
- prefix 在pd.get_dummies中使用
- suffixes 在pd.merge中使用