首页 > 编程语言 >基础算法二

基础算法二

时间:2023-02-05 18:11:36浏览次数:57  
标签:存储 dist int 基础 st return 算法 点数

树与图的存储
树是一种特殊的图,与图的存储方式相同。
对于无向图中的边ab,存储两条有向边a->b, b->a。
因此我们可以只考虑有向图的存储。

(1) 邻接矩阵:g[a][b] 存储边a->b

(2) 邻接表:

// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;

// 添加一条边a->b
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

// 初始化
idx = 0;
memset(h, -1, sizeof h);
树与图的遍历
时间复杂度 O(n+m)O(n+m), nn 表示点数,mm 表示边数
(1) 深度优先遍历 —— 模板题 AcWing 846. 树的重心

int dfs(int u)
{
st[u] = true; // st[u] 表示点u已经被遍历过

for (int i = h[u]; i != -1; i = ne[i])
{
    int j = e[i];
    if (!st[j]) dfs(j);
}

}
(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次

queue q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);

while (q.size())
{
int t = q.front();
q.pop();

for (int i = h[t]; i != -1; i = ne[i])
{
    int j = e[i];
    if (!s[j])
    {
        st[j] = true; // 表示点j已经被遍历过
        q.push(j);
    }
}

}
拓扑排序 —— 模板题 AcWing 848. 有向图的拓扑序列
时间复杂度 O(n+m)O(n+m), nn 表示点数,mm 表示边数
bool topsort()
{
int hh = 0, tt = -1;

// d[i] 存储点i的入度
for (int i = 1; i <= n; i ++ )
    if (!d[i])
        q[ ++ tt] = i;

while (hh <= tt)
{
    int t = q[hh ++ ];

    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (-- d[j] == 0)
            q[ ++ tt] = j;
    }
}

// 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
return tt == n - 1;

}
朴素dijkstra算法 —— 模板题 AcWing 849. Dijkstra求最短路 I
时间复杂是 O(n2+m)O(n2+m), nn 表示点数,mm 表示边数
int g[N][N]; // 存储每条边
int dist[N]; // 存储1号点到每个点的最短距离
bool st[N]; // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;

for (int i = 0; i < n - 1; i ++ )
{
    int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
    for (int j = 1; j <= n; j ++ )
        if (!st[j] && (t == -1 || dist[t] > dist[j]))
            t = j;

    // 用t更新其他点的距离
    for (int j = 1; j <= n; j ++ )
        dist[j] = min(dist[j], dist[t] + g[t][j]);

    st[t] = true;
}

if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];

}
堆优化版dijkstra —— 模板题 AcWing 850. Dijkstra求最短路 II
时间复杂度 O(mlogn)O(mlogn), nn 表示点数,mm 表示边数
typedef pair<int, int> PII;

int n; // 点的数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到1号点的距离
bool st[N]; // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector, greater> heap;
heap.push({0, 1}); // first存储距离,second存储节点编号

while (heap.size())
{
    auto t = heap.top();
    heap.pop();

    int ver = t.second, distance = t.first;

    if (st[ver]) continue;
    st[ver] = true;

    for (int i = h[ver]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (dist[j] > distance + w[i])
        {
            dist[j] = distance + w[i];
            heap.push({dist[j], j});
        }
    }
}

if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];

}
Bellman-Ford算法 —— 模板题 AcWing 853. 有边数限制的最短路
时间复杂度 O(nm)O(nm), nn 表示点数,mm 表示边数
注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。

int n, m; // n表示点数,m表示边数
int dist[N]; // dist[x]存储1到x的最短路距离

struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;

// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
for (int i = 0; i < n; i ++ )
{
    for (int j = 0; j < m; j ++ )
    {
        int a = edges[j].a, b = edges[j].b, w = edges[j].w;
        if (dist[b] > dist[a] + w)
            dist[b] = dist[a] + w;
    }
}

if (dist[n] > 0x3f3f3f3f / 2) return -1;
return dist[n];

}
spfa 算法(队列优化的Bellman-Ford算法) —— 模板题 AcWing 851. spfa求最短路
时间复杂度 平均情况下 O(m)O(m),最坏情况下 O(nm)O(nm), nn 表示点数,mm 表示边数
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储每个点到1号点的最短距离
bool st[N]; // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;

queue<int> q;
q.push(1);
st[1] = true;

while (q.size())
{
    auto t = q.front();
    q.pop();

    st[t] = false;

    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (dist[j] > dist[t] + w[i])
        {
            dist[j] = dist[t] + w[i];
            if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
            {
                q.push(j);
                st[j] = true;
            }
        }
    }
}

if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];

}
spfa判断图中是否存在负环 —— 模板题 AcWing 852. spfa判断负环
时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N]; // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
// 不需要初始化dist数组
// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

queue<int> q;
for (int i = 1; i <= n; i ++ )
{
    q.push(i);
    st[i] = true;
}

while (q.size())
{
    auto t = q.front();
    q.pop();

    st[t] = false;

    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (dist[j] > dist[t] + w[i])
        {
            dist[j] = dist[t] + w[i];
            cnt[j] = cnt[t] + 1;
            if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
            if (!st[j])
            {
                q.push(j);
                st[j] = true;
            }
        }
    }
}

return false;

}
floyd算法 —— 模板题 AcWing 854. Floyd求最短路
时间复杂度是 O(n3)O(n3), nn 表示点数
初始化:
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i == j) d[i][j] = 0;
else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
朴素版prim算法 —— 模板题 AcWing 858. Prim算法求最小生成树
时间复杂度是 O(n2+m)O(n2+m), nn 表示点数,mm 表示边数
int n; // n表示点数
int g[N][N]; // 邻接矩阵,存储所有边
int dist[N]; // 存储其他点到当前最小生成树的距离
bool st[N]; // 存储每个点是否已经在生成树中

// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
memset(dist, 0x3f, sizeof dist);

int res = 0;
for (int i = 0; i < n; i ++ )
{
    int t = -1;
    for (int j = 1; j <= n; j ++ )
        if (!st[j] && (t == -1 || dist[t] > dist[j]))
            t = j;

    if (i && dist[t] == INF) return INF;

    if (i) res += dist[t];
    st[t] = true;

    for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
}

return res;

}
Kruskal算法 —— 模板题 AcWing 859. Kruskal算法求最小生成树
时间复杂度是 O(mlogm)O(mlogm), nn 表示点数,mm 表示边数
int n, m; // n是点数,m是边数
int p[N]; // 并查集的父节点数组

struct Edge // 存储边
{
int a, b, w;

bool operator< (const Edge &W)const
{
    return w < W.w;
}

}edges[M];

int find(int x) // 并查集核心操作
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}

int kruskal()
{
sort(edges, edges + m);

for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

int res = 0, cnt = 0;
for (int i = 0; i < m; i ++ )
{
    int a = edges[i].a, b = edges[i].b, w = edges[i].w;

    a = find(a), b = find(b);
    if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
    {
        p[a] = b;
        res += w;
        cnt ++ ;
    }
}

if (cnt < n - 1) return INF;
return res;

}
染色法判别二分图 —— 模板题 AcWing 860. 染色法判定二分图
时间复杂度是 O(n+m)O(n+m), nn 表示点数,mm 表示边数
int n; // n表示点数
int h[N], e[M], ne[M], idx; // 邻接表存储图
int color[N]; // 表示每个点的颜色,-1表示为染色,0表示白色,1表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
color[u] = c;
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (color[j] == -1)
{
if (!dfs(j, !c)) return false;
}
else if (color[j] == c) return false;
}

return true;

}

bool check()
{
memset(color, -1, sizeof color);
bool flag = true;
for (int i = 1; i <= n; i ++ )
if (color[i] == -1)
if (!dfs(i, 0))
{
flag = false;
break;
}
return flag;
}
匈牙利算法 —— 模板题 AcWing 861. 二分图的最大匹配
时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数
int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第二个集合指向第一个集合的边,所以这里只用存一个方向的边
int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x)
{
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true;
if (match[j] == 0 || find(match[j]))
{
match[j] = x;
return true;
}
}
}

return false;

}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
memset(st, false, sizeof st);
if (find(i)) res ++ ;
}

作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

标签:存储,dist,int,基础,st,return,算法,点数
From: https://www.cnblogs.com/zyzzzz/p/17093736.html

相关文章