排序算法
排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。
# 常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。
稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。
不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序
冒泡排序
冒泡排序就是重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。就这样重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
# 算法步骤
1 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
3 针对所有的元素重复以上的步骤,除了最后一个。
4 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
# 什么时候最快
当输入的数据已经是正序时(都已经是正序了,我还要你冒泡排序有何用啊)。
# 什么时候最慢
当输入的数据是反序时(写一个 for 循环反序输出数据不就行了,干嘛要用你冒泡排序呢,我是闲的吗)。
# 实例
def bubbleSort(arr):
for i in range(1, len(arr)):
for j in range(0, len(arr)-i):
if arr[j] > arr[j+1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
return arr
选择排序
选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。
# 算法步骤
1 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
2 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
3 重复第二步,直到所有元素均排序完毕。
# 实例
def selectionSort(arr):
for i in range(len(arr) - 1):
# 记录最小数的索引
minIndex = i
for j in range(i + 1, len(arr)):
if arr[j] < arr[minIndex]:
minIndex = j
# i 不是最小数时,将 i 和最小数进行交换
if i != minIndex:
arr[i], arr[minIndex] = arr[minIndex], arr[i]
return arr
插入排序
插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
'插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。'
# 算法步骤
1 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
2 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)
# 实例
def insertionSort(arr):
for i in range(len(arr)):
preIndex = i-1
current = arr[i]
while preIndex >= 0 and arr[preIndex] > current:
arr[preIndex+1] = arr[preIndex]
preIndex-=1
arr[preIndex+1] = current
return arr
归并排序
归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
-作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
自下而上的迭代;
-和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。
# 算法步骤
1 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
2 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
3 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
4 重复步骤 3 直到某一指针达到序列尾;
5 将另一序列剩下的所有元素直接复制到合并序列尾。
# 实例
def mergeSort(arr):
import math
if(len(arr)<2):
return arr
middle = math.floor(len(arr)/2)
left, right = arr[0:middle], arr[middle:]
return merge(mergeSort(left), mergeSort(right))
def merge(left,right):
result = []
while left and right:
if left[0] <= right[0]:
result.append(left.pop(0))
else:
result.append(right.pop(0));
while left:
result.append(left.pop(0))
while right:
result.append(right.pop(0));
return result
标签:arr,元素,冒泡排序,算法,序列,排序
From: https://www.cnblogs.com/riuqi/p/17084126.html