初步认识 ArrayList<>
ArrayList
ArrayList
一种模板:ArrayList<T>
,代码如下:
public class ArrayList<T> {
private T[] array;
private int size;
public void add(T e) {...}
public void remove(int index) {...}
public T get(int index) {...}
}
T
可以是任何class。这样一来,我们就实现了:编写一次模版,可以创建任意类型的ArrayList
:
// 创建可以存储String的ArrayList:
ArrayList<String> strList = new ArrayList<String>();
// 创建可以存储Float的ArrayList:
ArrayList<Float> floatList = new ArrayList<Float>();
// 创建可以存储Person的ArrayList:
ArrayList<Person> personList = new ArrayList<Person>();
因此,泛型就是定义一种模板,例如ArrayList<T>
,然后在代码中为用到的类创建对应的ArrayList<类型>
:
ArrayList<String> strList = new ArrayList<String>();
由编译器针对类型作检查:
strList.add("hello"); // OK
String s = strList.get(0); // OK
strList.add(new Integer(123)); // compile error!
Integer n = strList.get(0); // compile error!
这样一来,既实现了编写一次,万能匹配,又通过编译器保证了类型安全:这就是泛型。
向上转型
注意泛型的继承关系:可以把ArrayList<Integer>
向上转型为List<Integer>
(T
不能变!),但不能把ArrayList<Integer>
向上转型为ArrayList<Number>
(T
不能变成父类)。
使用泛型
泛型的声明
使用ArrayList
时,如果不定义泛型类型时,泛型类型实际上就是Object
:
// 编译器警告:
List list = new ArrayList();
list.add("Hello");
list.add("World");
String first = (String) list.get(0);
String second = (String) list.get(1);
此时,只能把<T>
当作Object
使用,没有发挥泛型的优势。
当我们定义泛型类型<String>
后,List<T>
的泛型接口变为强类型List<String>
:
// 无编译器警告:
List<String> list = new ArrayList<String>();
list.add("Hello");
list.add("World");
// 无强制转型:
String first = list.get(0);
String second = list.get(1);
我们定义泛型类型<Number>
后,List<T>
的泛型接口变为强类型List<Number>
:
List<Number> list = new ArrayList<Number>();
list.add(new Integer(123));
list.add(new Double(12.34));
Number first = list.get(0);
Number second = list.get(1);
编译器如果能自动推断出泛型类型,就可以省略后面的泛型类型。例如,对于下面的代码:
List<Number> list = new ArrayList<Number>();
编译器看到泛型类型List<Number>
就可以自动推断出后面的ArrayList<T>
的泛型类型必须是ArrayList<Number>
,因此,可以把代码简写为:
// 可以省略后面的Number,编译器可以自动推断泛型类型:
List<Number> list = new ArrayList<>();
泛型的接口
除了ArrayList<T>
使用了泛型,还可以在接口中使用泛型。例如,Arrays.sort(Object[])
可以对任意数组进行排序,但待排序的元素必须实现Comparable<T>
这个泛型接口:
public interface Comparable<T> {
/**
* 返回负数: 当前实例比参数o小
* 返回0: 当前实例与参数o相等
* 返回正数: 当前实例比参数o大
*/
int compareTo(T o);
}
可以直接对String
数组进行排序:
// sort import java.util.Arrays; public class Main { public static void main(String[] args) {
String[] ss = new String[] { "Orange", "Apple", "Pear" };
Arrays.sort(ss);
System.out.println(Arrays.toString(ss));
这是因为String
本身已经实现了Comparable<String>
接口。如果换成我们自定义的Person
类型试试:
// sort
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
Person[] ps = new Person[] {
new Person("Bob", 61),
new Person("Alice", 88),
new Person("Lily", 75),
};
Arrays.sort(ps);
System.out.println(Arrays.toString(ps));
}
}
class Person implements Comparable<Person> {
String name;
int score;
Person(String name, int score) {
this.name = name;
this.score = score;
}
public int compareTo(Person other) { //也就是说根据名字来排序
return this.name.compareTo(other.name);
}
public String toString() {
return this.name + "," + this.score;
}
}
编写泛型
普通方法
首先,按照某种类型,例如:String
,来编写类:
public class Pair {
private String first;
private String last;
public Pair(String first, String last) {
this.first = first;
this.last = last;
}
public String getFirst() {
return first;
}
public String getLast() {
return last;
}
}
然后,标记所有的特定类型,这里是String
:
public class Pair {
private String first;
private String last;
public Pair(String first, String last) {
this.first = first;
this.last = last;
}
public String getFirst() {
return first;
}
public String getLast() {
return last;
}
}
最后,把特定类型String
替换为T
,并申明<T>
:
public class Pair<T> {
private T first;
private T last;
public Pair(T first, T last) {
this.first = first;
this.last = last;
}
public T getFirst() {
return first;
}
public T getLast() {
return last;
}
}
静态方法
对于静态方法,凡是涉及到<T>
类型的,在理解上,我们可以想象它就是一个 C++ 中的模板函数,需要模板声明,虽然 JAVA 中没有 template
关键字,但是他又一个 <T>
就代表了。之后我们可以将其放到类中加上 static 进行类的封装。这样就很容易理解下面的写法。
public class Pair<T> {
private T first;
private T last;
public Pair(T first, T last) {
this.first = first;
this.last = last;
}
public T getFirst() { ... }
public T getLast() { ... }
// 静态泛型方法应该使用其他类型区分:
public static <K> Pair<K> create(K first, K last) {
return new Pair<K>(first, last);
}
}
多个泛型类型
public class Pair<T, K> {
private T first;
private K last;
public Pair(T first, K last) {
this.first = first;
this.last = last;
}
public T getFirst() { ... }
public K getLast() { ... }
}
使用的时候,需要指出两种类型:
Pair<String, Integer> p = new Pair<>("test", 123);
联想:现在 C++ 中模板类的参数已经可以自动推导了。
JAVA中的泛型实现“擦拭法”和局限性
所谓擦拭法是指,虚拟机对泛型其实一无所知,所有的工作都是编译器做的。
例如,我们编写了一个泛型类Pair<T>
,这是编译器看到的代码:
public class Pair<T> {
private T first;
private T last;
public Pair(T first, T last) {
this.first = first;
this.last = last;
}
public T getFirst() {
return first;
}
public T getLast() {
return last;
}
}
而虚拟机根本不知道泛型。这是虚拟机执行的代码:
public class Pair {
private Object first;
private Object last;
public Pair(Object first, Object last) {
this.first = first;
this.last = last;
}
public Object getFirst() {
return first;
}
public Object getLast() {
return last;
}
}
因此,Java使用擦拭法实现泛型,导致了:
- 编译器把类型
<T>
视为Object
; - 编译器根据
<T>
实现安全的强制转型。
使用泛型的时候,我们编写的代码也是编译器看到的代码:
Pair<String> p = new Pair<>("Hello", "world");
String first = p.getFirst();
String last = p.getLast();
而虚拟机执行的代码并没有泛型:
Pair p = new Pair("Hello", "world");
String first = (String) p.getFirst();
String last = (String) p.getLast();
所以,Java的泛型是由编译器在编译时实行的,编译器内部永远把所有类型T
视为Object
处理,但是,在需要转型的时候,编译器会根据T
的类型自动为我们实行安全地强制转型。
了解了Java泛型的实现方式——擦拭法,我们就知道了Java泛型的局限:
- 局限一:
<T>
不能是基本类型,例如int
,因为实际类型是Object
,Object
类型无法持有基本类型:
Pair<int> p = new Pair<>(1, 2); // compile error!
- 局限二:无法取得带泛型的
Class
。观察以下代码:
public class Main {
public static void main(String[] args) {
Pair<String> p1 = new Pair<>("Hello", "world");
Pair<Integer> p2 = new Pair<>(123, 456);
Class c1 = p1.getClass();
Class c2 = p2.getClass();
System.out.println(c1==c2); // true
System.out.println(c1==Pair.class); // true
}
}
class Pair<T> {
private T first;
private T last;
public Pair(T first, T last) {
this.first = first;
this.last = last;
}
public T getFirst() {
return first;
}
public T getLast() {
return last;
}
}
因为T
是Object
,我们对Pair<String>
和Pair<Integer>
类型获取Class
时,获取到的是同一个Class
,也就是Pair
类的Class
。
换句话说,所有泛型实例,无论T
的类型是什么,getClass()
返回同一个Class
实例,因为编译后它们全部都是Pair<Object>
。
- 局限三:instanceof无法判断带泛型的类型:
Pair<Integer> p = new Pair<>(123, 456);
// Compile error:
if (p instanceof Pair<String>) {
}
原因和前面一样,并不存在Pair<String>.class
,而是只有唯一的Pair.class
。
- 局限四:不能实例化
T
类型:
public class Pair<T> {
private T first;
private T last;
public Pair() {
// Compile error:
first = new T();
last = new T();
}
}
上述代码无法通过编译,因为构造方法的两行语句:
first = new T();
last = new T();
擦拭后实际上变成了:
first = new Object();
last = new Object();
这样一来,创建new Pair<String>()
和创建new Pair<Integer>()
就全部成了Object
,显然编译器要阻止这种类型不对的代码。
在 C++ 中不存在这样的问题,Type 是什么类型,就是什么类型。我们可以得到该类型然后融入 STL 。
要实例化T
类型,我们必须借助额外的Class<T>
参数:
也就是创建一个带参(具体的类Class)的构造函数
public class Pair<T> {
private T first;
private T last;
public Pair(Class<T> clazz) {
first = clazz.newInstance();
last = clazz.newInstance();
}
}
上述代码借助Class<T>
参数并通过反射来实例化T
类型,使用的时候,也必须传入Class<T>
。例如:
Pair<String> pair = new Pair<>(String.class);
因为传入了Class<String>
的实例,所以我们借助String.class
就可以实例化String
类型。
泛型覆写方法可能会出错
有些时候,一个看似正确定义的方法会无法通过编译。例如:
public class Pair<T> {
public boolean equals(T t) {
return this == t;
}
}
这是因为,定义的equals(T t)
方法实际上会被擦拭成equals(Object t)
,而这个方法是继承自Object
的,编译器会阻止一个实际上会变成覆写的泛型方法定义。
换个方法名,避开与Object.equals(Object)
的冲突就可以成功编译:
public class Pair<T> {
public boolean same(T t) {
return this == t;
}
}
泛型继承
一个类可以继承自一个泛型类。例如:父类的类型是Pair<Integer>
,子类的类型是IntPair
,可以这么继承:
public class IntPair extends Pair<Integer> {
}
使用的时候,因为子类IntPair
并没有泛型类型,所以,正常使用即可:
IntPair ip = new IntPair(1, 2);
前面讲了,我们无法获取Pair<T>
的T
类型,即给定一个变量Pair<Integer> p
,无法从p
中获取到Integer
类型。
但是,在父类是泛型类型的情况下,编译器就必须把类型T
(对IntPair
来说,也就是Integer
类型)保存到子类的class文件中,不然编译器就不知道IntPair
只能存取Integer
这种类型。
在继承了泛型类型的情况下,子类可以获取父类的泛型类型。例如:IntPair
可以获取到父类的泛型类型Integer
。获取父类的泛型类型代码比较复杂:
以下代码还未充分理解!总之,子类可以获取父类的泛型类型<T>
。
import java.lang.reflect.ParameterizedType; import java.lang.reflect.Type; public class Main { public static void main(String[] args) {
Class<IntPair> clazz = IntPair.class;
Type t = clazz.getGenericSuperclass();
if (t instanceof ParameterizedType) {
ParameterizedType pt = (ParameterizedType) t;
Type[] types = pt.getActualTypeArguments(); // 可能有多个泛型类型
Type firstType = types[0]; // 取第一个泛型类型
Class<?> typeClass = (Class<?>) firstType;
System.out.println(typeClass); // Integer
}
}
}
class Pair<T> {
private T first;
private T last;
public Pair(T first, T last) {
this.first = first;
this.last = last;
}
public T getFirst() {
return first;
}
public T getLast() {
return last;
}
}
class IntPair extends Pair<Integer> {
public IntPair(Integer first, Integer last) {
super(first, last);
}
}
因为Java引入了泛型,所以,只用Class
来标识类型已经不够了。实际上,Java的类型系统结构如下:
┌────┐
│Type│
└────┘
▲
│
┌────────────┬────────┴─────────┬───────────────┐
│ │ │ │
┌─────┐┌─────────────────┐┌────────────────┐┌────────────┐
│Class││ParameterizedType││GenericArrayType││WildcardType│
└─────┘└─────────────────┘└────────────────┘└────────────┘
extends通配符
我们已知 Pair<Integer>
不是Pair<Number>
的子类。
我们又针对Pair<Number>
类型写了一个静态方法,它接收的参数类型是Pair<Number>
:
public class PairHelper {
static int add(Pair<Number> p) {
Number first = p.getFirst();
Number last = p.getLast();
return first.intValue() + last.intValue();
}
}
而问题在于该函数只能接收 Pair<Number>
而不能接受 Pair<Integer>
参数。
方法就是:从该函数的参数声明下手,加入 ? extends
而上面的 getFirst()
为只读的方法,是可以正常读取的! 但是不可以调用修改内部变量的方法!
不可修改主要是为了安全,防止 Number 子类调用 set 函数传入另外一个子类类型
那么总结来说,就是 extends 扩大了函数的应用范围,但也使得其不可调用写
函数,只可调用 读
函数。
补充一个概念。这种使用<? extends Number>
的泛型定义称之为上界通配符(Upper Bounds Wildcards),即把泛型类型T
的上界限定在Number
了。
主要作用一:用在函数上,仅读取
如果我们考察Java标准库的java.util.List<T>
接口,它实现的是一个类似“可变数组”的列表,主要功能包括:
public interface List<T> {
int size(); // 获取个数
T get(int index); // 根据索引获取指定元素
void add(T t); // 添加一个新元素
void remove(T t); // 删除一个已有元素
}
现在,让我们定义一个方法来处理列表的每个元素:
int sumOfList(List<? extends Integer> list) {
int sum = 0;
for (int i=0; i<list.size(); i++) {
Integer n = list.get(i);
sum = sum + n;
}
return sum;
}
为什么我们定义的方法参数类型是List<? extends Integer>
而不是List<Integer>
?从方法内部代码看,传入List<? extends Integer>
或者List<Integer>
是完全一样的,但是,注意到List<? extends Integer>
的限制:
- 允许调用
get()
方法获取Integer
的引用; - 不允许调用
set(? extends Integer)
方法并传入任何Integer
的引用(null
除外)。
因此,方法参数类型List<? extends Integer>
表明了该方法内部只会读取List
的元素,不会修改List
的元素(因为无法调用add(? extends Integer)
、remove(? extends Integer)
这些方法。换句话说,这是一个对参数List<? extends Integer>
进行只读的方法(恶意调用set(null)
除外)。
主要作用二:用在类上,使用extends限定T类型
在定义泛型类型Pair<T>
的时候,也可以使用extends
通配符来限定T
的类型:
public class Pair<T extends Number> { ... }
在定义泛型类型Pair<T>
的时候,也可以使用extends
通配符来限定T
的类型:
public class Pair<T extends Number> { ... }
现在,我们只能定义:
Pair<Number> p1 = null;
Pair<Integer> p2 = new Pair<>(1, 2);
Pair<Double> p3 = null;
因为Number
、Integer
和Double
都符合<T extends Number>
。
super 通配符
我们前面已经讲到了泛型的继承关系:Pair<Integer>
不是Pair<Number>
的子类。
考察下面的set
方法:
void set(Pair<Integer> p, Integer first, Integer last) {
p.setFirst(first);
p.setLast(last);
}
传入Pair<Integer>
是允许的,但是传入Pair<Number>
是不允许的。
和extends
通配符相反,这次,我们希望接受Pair<Integer>
类型,以及Pair<Number>
、Pair<Object>
,因为Number
和Object
是Integer
的父类,setFirst(Number)
和setFirst(Object)
实际上允许接受Integer
类型。
我们使用super
通配符来改写这个方法:
void set(Pair<? super Integer> p, Integer first, Integer last) {
p.setFirst(first);
p.setLast(last);
}
注意到Pair<? super Integer>
表示,方法参数接受所有泛型类型为Integer
或Integer
父类的Pair
类型。
下面的代码可以被正常编译:
public class Main {
public static void main(String[] args) {
Pair<Number> p1 = new Pair<>(12.3, 4.56);
Pair<Integer> p2 = new Pair<>(123, 456);
setSame(p1, 100);
setSame(p2, 200);
System.out.println(p1.getFirst() + ", " + p1.getLast());
System.out.println(p2.getFirst() + ", " + p2.getLast());
}
static void setSame(Pair<? super Integer> p, Integer n) {
p.setFirst(n);
p.setLast(n);
}
}
class Pair<T> {
private T first;
private T last;
public Pair(T first, T last) {
this.first = first;
this.last = last;
}
public T getFirst() {
return first;
}
public T getLast() {
return last;
}
public void setFirst(T first) {
this.first = first;
}
public void setLast(T last) {
this.last = last;
}
}
使用<? super Integer>
通配符表示:
- 允许调用
set(? super Integer)
方法传入Integer
的引用; - 不允许调用
get()
方法获得Integer
的引用。
唯一例外是可以获取Object
的引用:Object o = p.getFirst()
。
换句话说,使用<? super Integer>
通配符作为方法参数,表示方法内部代码对于参数只能写,不能读。
对比 extends和super通配符
我们再回顾一下extends
通配符。作为方法参数,<? extends T>
类型和<? super T>
类型的区别在于:
<? extends T>
允许调用读方法T get()
获取T
的引用,但不允许调用写方法set(T)
传入T
的引用(传入null
除外);<? super T>
允许调用写方法set(T)
传入T
的引用,但不允许调用读方法T get()
获取T
的引用(获取Object
除外)。
一个是允许读不允许写,另一个是允许写不允许读。
我们来看Java标准库的Collections
类定义的copy()
方法:
public class Collections {
// 把src的每个元素复制到dest中:
public static <T> void copy(List<? super T> dest, List<? extends T> src) {
for (int i=0; i<src.size(); i++) {
T t = src.get(i);
dest.add(t);
}
}
}
它的作用是把一个List
的每个元素依次添加到另一个List
中。它的第一个参数是List<? super T>
,表示目标List
,第二个参数List<? extends T>
,表示要复制的List
。我们可以简单地用for
循环实现复制。在for
循环中,我们可以看到,对于类型<? extends T>
的变量src
,我们可以安全地获取类型T
的引用,而对于类型<? super T>
的变量dest
,我们可以安全地传入T
的引用。
这个copy()
方法的定义就完美地展示了extends
和super
的意图:
copy()
方法内部不会读取dest
,因为不能调用dest.get()
来获取T
的引用;copy()
方法内部也不会修改src
,因为不能调用src.add(T)
。
何时使用extends
,何时使用super
?为了便于记忆,我们可以用PECS原则:Producer Extends Consumer Super。
即:如果需要返回T
,它是生产者(Producer),要使用extends
通配符;如果需要写入T
,它是消费者(Consumer),要使用super
通配符。
无限定通配符
我们已经讨论了<? extends T>
和<? super T>
作为方法参数的作用。实际上,Java的泛型还允许使用无限定通配符(Unbounded Wildcard Type),即只定义一个?
:
void sample(Pair<?> p) {}
因为<?>
通配符既没有extends
,也没有super
,因此:
- 不允许调用
set(T)
方法并传入引用(null
除外); - 不允许调用
T get()
方法并获取T
引用(只能获取Object
引用)。
换句话说,既不能读,也不能写,那只能做一些null
判断:
static boolean isNull(Pair<?> p) {
return p.getFirst() == null || p.getLast() == null;
}
大多数情况下,可以引入泛型参数<T>
消除<?>
通配符:
static <T> boolean isNull(Pair<T> p) {
return p.getFirst() == null || p.getLast() == null;
}
<?>
通配符有一个独特的特点,就是:Pair<?>
是所有Pair<T>
的超类:
public class Main {
public static void main(String[] args) {
Pair<Integer> p = new Pair<>(123, 456);
Pair<?> p2 = p; // 安全地向上转型
System.out.println(p2.getFirst() + ", " + p2.getLast());
}
}
class Pair<T> {
private T first;
private T last;
public Pair(T first, T last) {
this.first = first;
this.last = last;
}
public T getFirst() {
return first;
}
public T getLast() {
return last;
}
public void setFirst(T first) {
this.first = first;
}
public void setLast(T last) {
this.last = last;
}
}
无限定通配符<?>
很少使用,可以用<T>
替换,同时它是所有<T>
类型的超类。
泛型与反射
- Java的部分反射API也是泛型。例如:
Class<T>
就是泛型:
也就是说,之前一直在用的 Class 是一个泛型。
之所以下面第一种会有 warning 是因为没有经历了向上再向下的一个过程,而第二个是平级。
// compile warning:
Class clazz = String.class;
String str = (String) clazz.newInstance();
// no warning:
Class<String> clazz = String.class;
String str = clazz.newInstance();
- 调用
Class
的getSuperclass()
方法返回的Class
类型是Class<? super T>
:
Class<? super String> sup = String.class.getSuperclass();
- 构造方法
Constructor<T>
也是泛型:
Class<Integer> clazz = Integer.class;
Constructor<Integer> cons = clazz.getConstructor(int.class);//得到传入参数为 int 的构造函数
Integer i = cons.newInstance(123); //利用构造函数调用 newInstance() 来创建一个实例
-
我们可以声明带泛型的数组,但不能用
new
操作符创建带泛型的数组:-
Pair<String>[] ps = null; // ok Pair<String>[] ps = new Pair<String>[2]; // compile error!
-
必须通过强制转型实现带泛型的数组:
-
@SuppressWarnings("unchecked") Pair<String>[] ps = (Pair<String>[]) new Pair[2];
-
接下来我们把上面的一句话,拆成两句话,就会出问题。也就是多出来一个中间的引用变量 arr
Pair[] arr = new Pair[2];
Pair<String>[] ps = (Pair<String>[]) arr;
ps[0] = new Pair<String>("a", "b"); // 正确
arr[1] = new Pair<Integer>(1, 2); // 偷梁换柱,不正确了!
// ClassCastException:
Pair<String> p = ps[1];
String s = p.getFirst();
使用泛型数组要特别小心,因为数组实际上在运行期没有泛型,编译器可以强制检查变量ps
,因为它的类型是泛型数组。但是,编译器不会检查变量arr
,因为它不是泛型数组。因为这两个变量实际上指向同一个数组,所以,操作arr
可能导致从ps
获取元素时报错.
带泛型的数组实际上是编译器的类型擦除:你看下面的 ps.getClass()
等于 Pair[].class
压根就没有 String
的影子,这就是类型擦除。
Pair[] arr = new Pair[2];
Pair<String>[] ps = (Pair<String>[]) arr;
System.out.println(ps.getClass() == Pair[].class); // true
String s1 = (String) arr[0].getFirst();
String s2 = ps[0].getFirst();
以下,仍然是 类型擦除 的思想。
- 创建泛型数组
所以我们不能直接创建泛型数组T[]
,因为擦拭后代码变为Object[]
:JAVA不知道你传进来的 T 是什么,统一擦除为 Object 那肯定不行啊。
// compile error:
public class Abc<T> {
T[] createArray() {
return new T[5];
}
}
我们让 JAVA 知道我们传进来的是什么类型不就好了,用 Class<T>
这里面包含了 T 的内容。
必须借助Class<T>
来创建泛型数组:
T[] createArray(Class<T> cls) {
return (T[]) Array.newInstance(cls, 5);
}
- 可变参数创建泛型数组 , 它不香吗?
- 特别注意要用 @SafeVarargs 修饰
public class ArrayHelper {
@SafeVarargs
static <T> T[] asArray(T... objs) {
return objs;
}
}
String[] ss = ArrayHelper.asArray("a", "b", "c");
Integer[] ns = ArrayHelper.asArray(1, 2, 3);
补充《《Effective Java》》
在上面的例子中,我们看到,通过:
static <T> T[] asArray(T... objs) {
return objs;
}
似乎可以安全地创建一个泛型数组。但实际上,这种方法非常危险。以下代码来自《Effective Java》的示例:
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
String[] arr = asArray("one", "two", "three");
System.out.println(Arrays.toString(arr));
// ClassCastException:
String[] firstTwo = pickTwo("one", "two", "three");
System.out.println(Arrays.toString(firstTwo));
}
static <K> K[] pickTwo(K k1, K k2, K k3) {
return asArray(k1, k2);
}
static <T> T[] asArray(T... objs) {
return objs;
}
}
直接调用asArray(T...)
似乎没有问题,但是在另一个方法中,我们返回一个泛型数组就会产生ClassCastException
,原因还是因为擦拭法,在pickTwo()
方法内部,编译器无法检测K[]
的正确类型,因此返回了Object[]
。
如果仔细观察,可以发现编译器对所有可变泛型参数都会发出警告,除非确认完全没有问题,才可以用@SafeVarargs
消除警告。