1、一些处理矩阵运算,图像处理算法,直接采用python实现可能速度稍微慢,效率不高,或者为了直接在python中调用其他C++第三方库。 图像,矩阵在python中通常表示为numpy.ndarray,因此如何在C++中解析numpy对象,numpy的数据如何传递到C++非常关键,解决了这些问题,就可以丝滑的在python numpy和C++中切换,互相调用。
C++代码:
#include<iostream>
#include<pybind11/pybind11.h>
#include<pybind11/numpy.h>
namespace py = pybind11;
/*
1d矩阵相加
*/
py::array_t<double> add_arrays_1d(py::array_t<double>& input1, py::array_t<double>& input2) {
// 获取input1, input2的信息
py::buffer_info buf1 = input1.request();
py::buffer_info buf2 = input2.request();
if (buf1.ndim !=1 || buf2.ndim !=1)
{
throw std::runtime_error("Number of dimensions must be one");
}
if (buf1.size !=buf2.size)
{
throw std::runtime_error("Input shape must match");
}
//申请空间
auto result = py::array_t<double>(buf1.size);
py::buffer_info buf3 = result.request();
//获取numpy.ndarray 数据指针
double* ptr1 = (double*)buf1.ptr;
double* ptr2 = (double*)buf2.ptr;
double* ptr3 = (double*)buf3.ptr;
//指针访问numpy.ndarray
for (int i = 0; i < buf1.shape[0]; i++)
{
ptr3[i] = ptr1[i] + ptr2[i];
}
return result;
}
/*
2d矩阵相加
*/
py::array_t<double> add_arrays_2d(py::array_t<double>& input1, py::array_t<double>& input2) {
py::buffer_info buf1 = input1.request();
py::buffer_info buf2 = input2.request();
if (buf1.ndim != 2 || buf2.ndim != 2)
{
throw std::runtime_error("numpy.ndarray dims must be 2!");
}
if ((buf1.shape[0] != buf2.shape[0])|| (buf1.shape[1] != buf2.shape[1]))
{
throw std::runtime_error("two array shape must be match!");
}
//申请内存
auto result = py::array_t<double>(buf1.size);
//转换为2d矩阵
result.resize({buf1.shape[0],buf1.shape[1]});
py::buffer_info buf_result = result.request();
//指针访问读写 numpy.ndarray
double* ptr1 = (double*)buf1.ptr;
double* ptr2 = (double*)buf2.ptr;
double* ptr_result = (double*)buf_result.ptr;
for (int i = 0; i < buf1.shape[0]; i++)
{
for (int j = 0; j < buf1.shape[1]; j++)
{
auto value1 = ptr1[i*buf1.shape[1] + j];
auto value2 = ptr2[i*buf2.shape[1] + j];
ptr_result[i*buf_result.shape[1] + j] = value1 + value2;
}
}
return result;
}
//py::array_t<double> add_arrays_3d(py::array_t<double>& input1, py::array_t<double>& input2) {
//
// py::buffer_info buf1 = input1.request();
// py::buffer_info buf2 = input2.request();
//
// if (buf1.ndim != 3 || buf2.ndim != 3)
// throw std::runtime_error("numpy array dim must is 3!");
//
// for (int i = 0; i < buf1.ndim; i++)
// {
// if (buf1.shape[i]!=buf2.shape[i])
// {
// throw std::runtime_error("inputs shape must match!");
// }
// }
//
// // 输出
// auto result = py::array_t<double>(buf1.size);
// result.resize({ buf1.shape[0], buf1.shape[1], buf1.shape[2] });
// py::buffer_info buf_result = result.request();
//
// // 指针读写numpy数据
// double* ptr1 = (double*)buf1.ptr;
// double* ptr2 = (double*)buf2.ptr;
// double* ptr_result = (double*)buf_result.ptr;
//
// for (int i = 0; i < buf1.size; i++)
// {
// std::cout << ptr1[i] << std::endl;
// }
//
// /*for (int i = 0; i < buf1.shape[0]; i++)
// {
// for (int j = 0; j < buf1.shape[1]; j++)
// {
// for (int k = 0; k < buf1.shape[2]; k++)
// {
//
// double value1 = ptr1[i*buf1.shape[1] * buf1.shape[2] + k];
// double value2 = ptr2[i*buf2.shape[1] * buf2.shape[2] + k];
//
// double value1 = ptr1[i*buf1.shape[1] * buf1.shape[2] + k];
// double value2 = ptr2[i*buf2.shape[1] * buf2.shape[2] + k];
//
// ptr_result[i*buf1.shape[1] * buf1.shape[2] + k] = value1 + value2;
//
// std::cout << value1 << " ";
//
// }
//
// std::cout << std::endl;
//
// }
// }*/
//
// return result;
//}
/*
numpy.ndarray 相加, 3d矩阵
@return 3d numpy.ndarray
*/
py::array_t<double> add_arrays_3d(py::array_t<double>& input1, py::array_t<double>& input2) {
//unchecked<N> --------------can be non-writeable
//mutable_unchecked<N>-------can be writeable
auto r1 = input1.unchecked<3>();
auto r2 = input2.unchecked<3>();
py::array_t<double> out = py::array_t<double>(input1.size());
out.resize({ input1.shape()[0], input1.shape()[1], input1.shape()[2] });
auto r3 = out.mutable_unchecked<3>();
for (int i = 0; i < input1.shape()[0]; i++)
{
for (int j = 0; j < input1.shape()[1]; j++)
{
for (int k = 0; k < input1.shape()[2]; k++)
{
double value1 = r1(i, j, k);
double value2 = r2(i, j, k);
//下标索引访问 numpy.ndarray
r3(i, j, k) = value1 + value2;
}
}
}
return out;
}
PYBIND11_MODULE(numpy_demo2, m) {
m.doc() = "Simple demo using numpy!";
m.def("add_arrays_1d", &add_arrays_1d);
m.def("add_arrays_2d", &add_arrays_2d);
m.def("add_arrays_3d", &add_arrays_3d);
}
python测试代码:
import demo9.numpy_demo2 as numpy_demo2
import numpy as np
var1 = numpy_demo2.add_arrays_1d(np.array([1, 3, 5, 7, 9]),
np.array([2, 4, 6, 8, 10]))
print('-'*50)
print('var1', var1)
var2 = numpy_demo2.add_arrays_2d(np.array(range(0,16)).reshape([4, 4]),
np.array(range(20,36)).reshape([4, 4]))
print('-'*50)
print('var2', var2)
input1 = np.array(range(0, 48)).reshape([4, 4, 3])
input2 = np.array(range(50, 50+48)).reshape([4, 4, 3])
var3 = numpy_demo2.add_arrays_3d(input1,
input2)
print('-'*50)
print('var3', var3)
结果如下:
2、python传递图像给C++
需要注意的是:这里传入的图像都是8U的,0-255数值,如果不是此类的数值需要进行修改,见后续!
#include <pybind11/numpy.h>
/*
Python->C++ Mat
*/
cv::Mat numpy_uint8_1c_to_cv_mat(py::array_t<unsigned char>& input) {
if (input.ndim() != 2)
throw std::runtime_error("1-channel image must be 2 dims ");
py::buffer_info buf = input.request();
cv::Mat mat(buf.shape[0], buf.shape[1], CV_8UC1, (unsigned char*)buf.ptr);
return mat;
}
cv::Mat numpy_uint8_3c_to_cv_mat(py::array_t<unsigned char>& input) {
if (input.ndim() != 3)
throw std::runtime_error("3-channel image must be 3 dims ");
py::buffer_info buf = input.request();
cv::Mat mat(buf.shape[0], buf.shape[1], CV_8UC3, (unsigned char*)buf.ptr);
return mat;
}
/*
C++ Mat ->numpy
*/
py::array_t<unsigned char> cv_mat_uint8_1c_to_numpy(cv::Mat& input) {
py::array_t<unsigned char> dst = py::array_t<unsigned char>({ input.rows,input.cols }, input.data);
return dst;
}
py::array_t<unsigned char> cv_mat_uint8_3c_to_numpy(cv::Mat& input) {
py::array_t<unsigned char> dst = py::array_t<unsigned char>({ input.rows,input.cols,3}, input.data);
return dst;
}
//PYBIND11_MODULE(cv_mat_warper, m) {
//
// m.doc() = "OpenCV Mat -> Numpy.ndarray warper";
//
// m.def("numpy_uint8_1c_to_cv_mat", &numpy_uint8_1c_to_cv_mat);
// m.def("numpy_uint8_1c_to_cv_mat", &numpy_uint8_1c_to_cv_mat);
//
//
//}
***如果数值不是0-255,需要进行原始数据的计算,如下:***
py::array_t<unsigned char> remove_background(py::array_t<int>& input1, py::array_t<unsigned char>& color, int max_dist)
{
cv::Mat color_image = numpy_uint8_3c_to_cv_mat(color);
py::buffer_info buf1 = input1.request();
int* ptr1 = (int*)buf1.ptr;
for (int i = 0; i < buf1.shape[0]; i++)
{
for (int j = 0; j < buf1.shape[1]; j++)
{
auto value1 = ptr1[i*buf1.shape[1] + j];
if (value1 > max_dist)
{
color_image.at<Vec3b>(i, j) = Vec3b(0, 0, 0);
}
}
}
}
3、python传递list给C++
例,python传递25个关节点的x,y,score给C++,C++返回x,y,score和空间的x,y,z给python
标签:python,double,py,C++,buf1,shape,Pybind11,array,numpy From: https://www.cnblogs.com/lidabo/p/16621369.html