首页 > 编程语言 >一个很好用的 C++ 高精度整数板子

一个很好用的 C++ 高精度整数板子

时间:2022-11-15 19:56:24浏览次数:46  
标签:const 高精度 int res C++ 板子 BigInt return size

点击查看代码
typedef long long ll;
typedef long double ld;
typedef complex<ld> pt;
const int MOD = 1e9 + 7;
const ld PI = acos(-1.L);

template<class T> struct cplx {
  T x, y;
  cplx() {
    x = 0.0;
    y = 0.0;
  }
  cplx(T nx, T ny = 0) {
    x = nx;
    y = ny;
  }
  cplx operator+(const cplx &c) const {
    return {x + c.x, y + c.y};
  }
  cplx operator-(const cplx &c) const {
    return {x - c.x, y - c.y};
  }
  cplx operator*(const cplx &c) const {
    return {x*c.x - y * c.y, x*c.y + y * c.x};
  }
  cplx& operator*=(const cplx &c) {
    return *this = {x*c.x - y * c.y, x*c.y + y * c.x};
  }
  inline T real() const {
    return x;
  }
  inline T imag() const {
    return y;
  }
  // Only supports right scalar multiplication like p*c
  template<class U> cplx operator*(const U &c) const {
    return {x * c, y * c};
  }
  template<class U> cplx operator/(const U &c) const {
    return {x / c, y / c};
  }
  template<class U> void operator/=(const U &c) {
    x /= c;
    y /= c;
  }
};
#define polar(r,a)  (cplx<ld>){r*cos(a),r*sin(a)}

const int DIG = 9, FDIG = 4;
const int BASE = 1e9, FBASE = 1e4;
typedef cplx<ld> Cplx;


// use mulmod when taking mod by int v and v>2e9
// you can use mod by bigint in that case too
struct BigInt {
  int sgn;
  vector<int> a;
  BigInt() : sgn(1) {}
  BigInt(ll v) {
    *this = v;
  }
  BigInt& operator = (ll v) {
    sgn = 1;
    if (v < 0) sgn = -1, v = -v;
    a.clear();
    for (; v > 0; v /= BASE) a.push_back(v % BASE);
    return *this;
  }
  BigInt(const BigInt& other) {
    sgn = other.sgn;
    a = other.a;
  }
  friend void swap(BigInt& a, BigInt& b) {
    swap(a.sgn, b.sgn);
    swap(a.a, b.a);
  }
  BigInt& operator = (BigInt other) {
    swap(*this, other);
    return *this;
  }
  BigInt(BigInt&& other) : BigInt() {
    swap(*this, other);
  }
  BigInt(const string& s) {
    read(s);
  }
  void read(const string& s) {
    sgn = 1;
    a.clear();
    int k = 0;
    for (; k < s.size() && (s[k] == '-' || s[k] == '+'); k++)
      if (s[k] == '-') sgn = -sgn;
    for (int i = s.size() - 1; i >= k; i -= DIG) {
      int x = 0;
      for (int j = max(k, i - DIG + 1); j <= i; j++) x = x * 10 + s[j] - '0';
      a.push_back(x);
    }
    trim();
  }
  friend istream& operator>>(istream &in, BigInt &v) {
    string s;
    in >> s;
    v.read(s);
    return in;
  }
  friend ostream& operator<<(ostream &out, const BigInt &v) {
    if (v.sgn == -1 && !v.zero()) out << '-';
    out << (v.a.empty() ? 0 : v.a.back());
    for (int i = (int) v.a.size() - 2; i >= 0; --i)
      out << setw(DIG) << setfill('0') << v.a[i];
    return out;
  }
  bool operator<(const BigInt &v) const {
    if (sgn != v.sgn) return sgn < v.sgn;
    if (a.size() != v.a.size()) return a.size() * sgn < v.a.size() * v.sgn;
    for (int i = (int)a.size() - 1; i >= 0; i--)
      if (a[i] != v.a[i]) return a[i] * sgn < v.a[i] * sgn;
    return 0;
  }
  bool operator>(const BigInt &v) const {
    return v < *this;
  }
  bool operator<=(const BigInt &v) const {
    return !(v < *this);
  }
  bool operator>=(const BigInt &v) const {
    return !(*this < v);
  }
  bool operator==(const BigInt &v) const {
    return !(*this < v) && !(v < *this);
  }
  bool operator!=(const BigInt &v) const {
    return *this < v || v < *this;
  }
  friend int __cmp(const BigInt& x, const BigInt& y) {
    if (x.a.size() != y.a.size()) return x.a.size() < y.a.size() ? -1 : 1;
    for (int i = (int) x.a.size() - 1; i >= 0; --i) if (x.a[i] != y.a[i])
        return x.a[i] < y.a[i] ? -1 : 1;
    return 0;
  }

  BigInt operator-() const {
    BigInt res = *this;
    if (zero()) return res;
    res.sgn = -sgn;
    return res;
  }

  void __add(const BigInt& v) {
    if (a.size() < v.a.size()) a.resize(v.a.size(), 0);
    for (int i = 0, carry = 0; i < max(a.size(), v.a.size()) || carry; ++i) {
      if (i == a.size()) a.push_back(0);
      a[i] += carry + (i < (int) v.a.size() ? v.a[i] : 0);
      carry = a[i] >= BASE;
      if (carry) a[i] -= BASE;
    }
  }

  void __sub(const BigInt& v) {
    for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i) {
      a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0);
      carry = a[i] < 0;
      if (carry) a[i] += BASE;
    }
    this->trim();
  }

  BigInt operator+=(const BigInt& v) {
    if (sgn == v.sgn) __add(v);
    else if (__cmp(*this, v) >= 0) __sub(v);
    else {
      BigInt vv = v;
      swap(*this, vv);
      __sub(vv);
    }
    return *this;
  }

  BigInt operator-=(const BigInt& v) {
    if (sgn == v.sgn) {
      if (__cmp(*this, v) >= 0) __sub(v);
      else {
        BigInt vv = v;
        swap(*this, vv);
        __sub(vv);
        sgn = -sgn;
      }
    } else __add(v);
    return *this;
  }

  template< typename L, typename R >
  typename enable_if <
  is_convertible<L, BigInt>::value &&
  is_convertible<R, BigInt>::value &&
  is_lvalue_reference < R&& >::value,
  BigInt >::type friend operator + (L&& l, R&& r) {
    BigInt result(forward<L>(l));
    result += r;
    return result;
  }
  template< typename L, typename R >
  typename enable_if <
  is_convertible<L, BigInt>::value &&
  is_convertible<R, BigInt>::value &&
  is_rvalue_reference < R&& >::value,
  BigInt >::type friend operator + (L&& l, R&& r) {
    BigInt result(move(r));
    result += l;
    return result;
  }
  template< typename L, typename R >
  typename enable_if <
  is_convertible<L, BigInt>::value &&
  is_convertible<R, BigInt>::value,
  BigInt >::type friend operator - (L&& l, R&& r) {
    BigInt result(forward<L>(l));
    result -= r;
    return result;
  }

  friend pair<BigInt, BigInt> divmod(const BigInt& a1, const BigInt& b1) {
    ll norm = BASE / (b1.a.back() + 1);
    BigInt a = a1.abs() * norm, b = b1.abs() * norm, q = 0, r = 0;
    q.a.resize(a.a.size());
    for (int i = a.a.size() - 1; i >= 0; i--) {
      r *= BASE;
      r += a.a[i];
      ll s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
      ll s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
      ll d = ((ll) BASE * s1 + s2) / b.a.back();
      r -= b * d;
      while (r < 0) r += b, --d;
      q.a[i] = d;
    }
    q.sgn = a1.sgn * b1.sgn;
    r.sgn = a1.sgn;
    q.trim();
    r.trim();
    auto res = make_pair(q, r / norm);
    if (res.second < 0) res.second += b1;
    return res;
  }
  BigInt operator/(const BigInt &v) const {
    return divmod(*this, v).first;
  }
  BigInt operator%(const BigInt &v) const {
    return divmod(*this, v).second;
  }
  void operator/=(int v) {
    if (llabs(v) >= BASE) {
      *this /= BigInt(v);
      return;
    }
    if (v < 0) sgn = -sgn, v = -v;
    for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i) {
      ll cur = a[i] + rem * (ll)BASE;
      a[i] = (int) (cur / v);
      rem = (int) (cur % v);
    }
    trim();
  }
  BigInt operator/(int v) const {
    if (llabs(v) >= BASE) return *this / BigInt(v);
    BigInt res = *this;
    res /= v;
    return res;
  }
  void operator/=(const BigInt &v) {
    *this = *this / v;
  }
  ll operator%(ll v) const {
    int m = 0;
    for (int i = a.size() - 1; i >= 0; --i) m = (a[i] + m * (ll) BASE) % v;
    return m * sgn;
  }
  void operator*=(int v) {
    if (llabs(v) >= BASE) {
      *this *= BigInt(v);
      return;
    }
    if (v < 0) sgn = -sgn, v = -v;
    for (int i = 0, carry = 0; i < a.size() || carry; ++i) {
      if (i == a.size()) a.push_back(0);
      ll cur = a[i] * (ll) v + carry;
      carry = (int) (cur / BASE);
      a[i] = (int) (cur % BASE);
    }
    trim();
  }
  BigInt operator*(int v) const {
    if (llabs(v) >= BASE) return *this * BigInt(v);
    BigInt res = *this;
    res *= v;
    return res;
  }

  static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
    vector<ll> p(max(old_digits, new_digits) + 1);
    p[0] = 1;
    for (int i = 1; i < (int) p.size(); i++)
      p[i] = p[i - 1] * 10;
    vector<int> res;
    ll cur = 0;
    int cur_digits = 0;
    for (int i = 0; i < (int) a.size(); i++) {
      cur += a[i] * p[cur_digits];
      cur_digits += old_digits;
      while (cur_digits >= new_digits) {
        res.push_back((ll)(cur % p[new_digits]));
        cur /= p[new_digits];
        cur_digits -= new_digits;
      }
    }
    res.push_back((int) cur);
    while (!res.empty() && !res.back())
      res.pop_back();
    return res;
  }

  void fft(vector<Cplx>& a, bool invert) const {
    int n = a.size();
    for (int i = 1, j = 0; i < n; ++i) {
      int bit = n / 2;
      for (; j >= bit; bit /= 2) j -= bit;
      j += bit;
      if (i < j) swap(a[i], a[j]);
    }
    for (int len = 2; len <= n; len *= 2) {
      ld ang = 2 * PI / len * (invert ? -1 : 1);
      Cplx wlen = polar(1, ang);
      for (int i = 0; i < n; i += len) {
        Cplx w(1);
        for (int j = 0; j < len / 2; ++j) {
          Cplx u = a[i + j], v = a[i + j + len / 2] * w;
          a[i + j] = u + v;
          a[i + j + len / 2] = u - v;
          w *= wlen;
        }
      }
    }
    if (invert) for (int i = 0; i < n; ++i) a[i] /= n;
  }
  void multiply_fft(const vector<int> &a, const vector<int> &b, vector<int> &res) const {
    vector<Cplx> fa(a.begin(), a.end()), fb(b.begin(), b.end());
    int n = 1;
    while (n < max(a.size(), b.size())) n *= 2;
    n *= 2;
    fa.resize(n);
    fb.resize(n);
    fft(fa, 0);
    fft(fb, 0);
    for (int i = 0; i < n; ++i) fa[i] *= fb[i];
    fft(fa, 1);
    res.resize(n);
    ll carry = 0;
    for (int i = 0; i < n; i++) {
      ll t = (ll)(fa[i].real() + 0.5) + carry;
      carry = t / FBASE;
      res[i] = t % FBASE;
    }
  }
  static inline int rev_incr(int a, int n) {
    int msk = n / 2, cnt = 0;
    while ( a & msk ) {
      cnt++;
      a <<= 1;
    }
    a &= msk - 1;
    a |= msk;
    while ( cnt-- ) a >>= 1;
    return a;
  }
  static vector<Cplx> FFT(vector<Cplx> v, int dir = 1) {
    Cplx wm, w, u, t;
    int n = v.size();
    vector<Cplx> V(n);
    for (int k = 0, a = 0; k < n; ++k, a = rev_incr(a, n))
      V[a] = v[k] / ld(dir > 0 ? 1 : n);
    for (int m = 2; m <= n; m <<= 1) {
      wm = polar( (ld)1, dir * 2 * PI / m );
      for (int k = 0; k < n; k += m) {
        w = 1;
        for (int j = 0; j < m / 2; ++j, w *= wm) {
          u = V[k + j];
          t = w * V[k + j + m / 2];
          V[k + j] = u + t;
          V[k + j + m / 2] = u - t;
        }
      }
    }
    return V;
  }
  static void convolution(const vector<int>& a, const vector<int>& b, vector<int>& c) {
    int sz = a.size() + b.size() - 1;
    int n  = 1 << int(ceil(log2(sz)));
    vector<Cplx> av(n, 0), bv(n, 0), cv;
    for (int i = 0; i < a.size(); i++) av[i] = a[i];
    for (int i = 0; i < b.size(); i++) bv[i] = b[i];
    cv = FFT(bv);
    bv = FFT(av);
    for (int i = 0; i < n; i++) av[i] = bv[i] * cv[i];
    cv = FFT(av, -1);
    c.resize(n);
    ll carry = 0;
    for (int i = 0; i < n; i++) {
      ll t = ll(cv[i].real() + 0.5) + carry;
      carry = t / FBASE;
      c[i] = t % FBASE;
    }
  }
  BigInt mul_simple(const BigInt &v) const {
    BigInt res;
    res.sgn = sgn * v.sgn;
    res.a.resize(a.size() + v.a.size());
    for (int i = 0; i < a.size(); i++) if (a[i])
        for (int j = 0, carry = 0; j < v.a.size() || carry; j++) {
          ll cur = res.a[i + j] + (ll) a[i] * (j < v.a.size() ? v.a[j] : 0) + carry;
          carry = (int) (cur / BASE);
          res.a[i + j] = (int) (cur % BASE);
        }
    res.trim();
    return res;
  }
  BigInt mul_fft(const BigInt& v) const {
    BigInt res;
    convolution(convert_base(a, DIG, FDIG), convert_base(v.a, DIG, FDIG), res.a);
    res.a = convert_base(res.a, FDIG, DIG);
    res.trim();
    return res;
  }
  void operator*=(const BigInt &v) {
    *this = *this * v;
  }
  BigInt operator*(const BigInt &v) const {
    if (1LL * a.size() * v.a.size() <= 1000111) return mul_simple(v);
    return mul_fft(v);
  }

  BigInt abs() const {
    BigInt res = *this;
    res.sgn *= res.sgn;
    return res;
  }
  void trim() {
    while (!a.empty() && !a.back()) a.pop_back();
  }
  bool zero() const {
    return a.empty() || (a.size() == 1 && !a[0]);
  }
  friend BigInt gcd(const BigInt &a, const BigInt &b) {
    return b.zero() ? a : gcd(b, a % b);
  }
};
BigInt power(BigInt a, ll k) {
  BigInt ans = 1;
  while (k > 0) {
    if (k & 1) ans *= a;
    a *= a;
    k >>= 1;
  }
  return ans;
}

标签:const,高精度,int,res,C++,板子,BigInt,return,size
From: https://www.cnblogs.com/legendstane/p/bigint-template.html

相关文章

  • C++类的内存结构
     第一种这个类是个空类 sizeof会占用一个字节 newt也是占用一个字节但作为其他类的成员变量可能会占用1-2-4-8字节这个是类的内存对齐导致 第2种这......
  • windows--cmake与c++的使用教程(3)
    概述本文基于前文环境本节目标:编写用于创建c++动态库的cmake脚本1创建动态库关键语法:add_library2创建动态库核心脚本解释add_library(项目名称SHARED代......
  • windwos cmake与c++的使用教程(2)
    概述本文基于前文环境一个基于cmake的hellocmake本节目标:使用VSCode创建cmake脚本文件,输出hellocmake1准备因为cmake执行过程可能有新的文件生成,所以,这里新......
  • C++——各版本新特性
    参考:https://www.cnblogs.com/yrm1160029237/p/14246166.htmlC++11auto关键字decltype关键字nullptr字面值constexpr关键字for(declaration:expression)Lambda表......
  • C/C++ Qt MdiArea 多窗体组件应用
    MDI多窗体组件,主要用于设计多文档界面应用程序,该组件具备有多种窗体展示风格,其实现了在父窗体中内嵌多种子窗体的功能,使用MDI组件需要在UI界面中增加mdiArea控件容器,我们所......
  • c++primier
    ch1开始编译、运行程序p3ch2变量和基本类型算数类型p30字面值常量概念p35const限定符p53const的引用p54指针和constp56顶层constp57constexpr......
  • CSP 201312-2 ISBN号码 C++
     1#include<iostream>2#include<algorithm>4#include<array>56intmain(){7std::array<int,9>ISBN{};8charc{};9intlenth{......
  • C++面经 : C++ 11 新特性(闭包与匿名函数) ----C++ Closure & C++ anonymous functions
    关于C++Closure闭包和C++anonymousfunctions匿名函数什么是闭包?在C++中,闭包是一个能够捕获作用域变量的未命名函数对象,它包含了需要使用的“上下文”(函数......
  • 数据结构前导课 | 1 温故知新——一篇文章领略信息学C++知识结构
    、戳一戳!和我一起走进信息学的世界导读C++是大多数学生入门信息学、参加信息学竞赛必备的编程语言。掌握C++,能够有助于孩子未来工作发展,也能提升孩子的综合能力,如抗挫折能力......
  • Matlab编译32位dll(c++)
    ##随手记录##核心:编译matlab核心工具链注意:需要把my_msvc_32bit_tc.m和myRtwTargetInfo.txt放在一个文件夹中,matlab目录文件也是转到此处step1:获取VC版本号方法一:在电......